Прогресс в разработке квантовых компьютеров показал, что они способны проводить вычисления, которые недоступны самым мощным классическим суперкомпьютерам. Исследователи из Физического института имени П.Н. Лебедева РАН (ФИАН) и Российского квантового центра (РКЦ) одни из первых в мире продемонстрировали решение прикладных задач на квантовом компьютере. Так, в ходе эксперимента они использовали процессор на основе ионов иттербия (Yb+) и разделили с его помощью написанные от руки изображения нуля и единицы, а также математических объектов – графов.

Источник фото - ru.123rf.com

Причем для достижения цели были задействованы алгоритмы машинного обучения, реализованные на квантовом процессоре. Результаты научной работы опубликованы в Physical Review A – одном из наиболее авторитетных академических журналов, посвященных вопросам физики.

«Такие технологии активно развивают во всех ведущих странах. На данный момент важный вызов – это тестирование методов квантовых вычислений на различных прикладных задачах. В частности, один из главных результатов нашей работы – применение этих алгоритмов в сочетании с технологией машинного обучения», – рассказал один из участников исследования, научный руководитель группы «Квантовые информационные технологии» РКЦ А.К. Федоров.   

По его словам, в целом, подобные эксперименты проводили и ранее, но предложенный российскими специалистами подход отличается своей оригинальностью. В частности, ученые сравнили различные способы кодирования данных в квантовые состояния и определили наиболее эффективный вариант.

Как объяснили исследователи, в работе был применен метод SVM (support vector machine) – это популярный для задач классификации метод машинного обучения. Он помогает разделять данные на классы посредством проведенной между ними наиболее оптимальным образом нелинейной границы. «Ядерную часть» алгоритма (сравнение данных) выполняли на квантовом процессоре. Это позволило эффективно обрабатывать даже сложные изображения.

«Для перевода ионов в квантовое состояние мы создавали суперпозиции и проводили операции запутывания кубитов. Квантовые состояния отдельных ионов изменялись с помощью лазеров и детекторов излучения. По завершении вычислений измерялось состояние иона, и на основе этих данных интерпретировались результаты работы алгоритмов машинного обучения», – описал процесс квантовых вычислений Алексей Федоров.

В процессе работы ученые экспериментировали с квантовыми цепями (один из способов реализации алгоритмов, который уменьшает количество шумных операций), что помогло улучшить качество вычислений.

Как объяснили ученые, алгоритм «обучался» на маленьком наборе данных, где каждое изображение уже имело правильный ответ (нуль или единица). В результате квантовый компьютер правильно определил все цифры как на обучающих, так и на тестовых картинках, то есть справился с задачей без ошибок.

Таким образом было показано, что даже небольшие квантовые процессоры уже могут решать простые, но практически значимые задачи, такие как классификация изображений. Это большой шаг к будущему, где квантовые процессоры будут выполнять более сложные вычисления.

По словам директора ФИАН Н.Н. Колачевского, в дальнейшем по мере развития подобная технология квантовой классификации сможет применяться для множества практических задач. Например, в медицине ее можно использовать для автоматического анализа рентгеновских снимков и данных МРТ и КТ, что поможет оперативно диагностировать заболевания.

«В области генетики и биоинформатики квантовые алгоритмы смогут проверять последовательности ДНК, выявляя мутации и предсказывая их влияние на организм. Вместе с тем химия получит инструмент для поиска новых молекулярных структур и моделирования каталитических процессов. В то же время в финансовой сфере квантовые алгоритмы смогут находить сложные закономерности в рыночных данных, улучшая прогнозирование и снижая риски», – пояснил Николай Колачевский.

В будущем данная технология найдет применение в создании систем искусственного интеллекта, где квантовые вычисления будут дополнять классические методы, ускоряя обучение нейросетей и повышая точность обработки данных.

 

Информация предоставлена Отделом по связям с общественностью ФИАН

Источник фото: ru.123rf.com