Выращивание микроводорослей во время эксперимента. Источник: Евгений Мальцев

Выращивание микроводорослей во время эксперимента. Источник: Евгений Мальцев

 

Российские ученые показали, что влияние медного загрязнения на почвенные микроводоросли обусловлено не только собственно концентрацией тяжелого металла, но и составом исходных загрязняющих соединений и количеством самих организмов. Так, малая плотность клеток и медный купорос сделали микроорганизмы более чувствительными к воздействию. Однако у некоторых видов даже при длительном загрязнении низкими концентрациями ацетата меди рост не только не замедлился, но даже стал интенсивнее. Найденные авторами закономерности помогут разработать подходы к использованию микроводорослей как для оценки загрязнения, так и для борьбы с ним. Работа выполнена при поддержке гранта Российского научного фонда (РНФ) и опубликована в International Journal of Environmental Science and Technology.

Тяжелые металлы — одни из наиболее опасных загрязнителей, поскольку они долго сохраняются в окружающей среде, накапливаются в живых организмах и достаточно токсичны (в больших количествах опасны, а в очень малых — жизненно необходимы для клеток). Основной их источник — промышленность, сельское хозяйство и добыча полезных ископаемых, которые с каждым годом только наращивают обороты, а значит, повышают риски загрязнений. Именно поэтому важно отслеживать содержание тяжелых металлов в природе. Один из подходов заключается в использовании биоиндикаторов — живых организмов, чаще всего микроорганизмов и растений. В результате удается не только определить и количественно оценить степень загрязнения, но и понять принцип его воздействия на клетки, а также выявить устойчивые к нему виды.

В новой работе исследователи из Института физиологии растений имени К.А. Тимирязева (Москва) решили выяснить, что происходит с разными микроводорослями почв при загрязнении медью. Этот тяжелый металл в малых количествах необходим для работы ключевых ферментов растений, а потому содержащие его удобрения часто применяют в сельском хозяйстве. Более того, некоторые его соединения (купорос, ацетат) используются при производстве фунгицидов для борьбы с грибковыми инфекциями. В итоге достаточно велики риски отравления почв, и страдают в основном ценные черноземы — в них содержание элемента может даже приближаться к предельно допустимым концентрациям, что чревато болезнями растений и создает угрозу для здоровья людей, которые работают на полях.

Коллекция штаммов почвенных микроводорослей. Источник: Евгений Мальцев

Коллекция штаммов почвенных микроводорослей. Источник: Евгений Мальцев

 

В экспериментах авторы использовали штаммы почвенных водорослей, которые могут накапливать липиды и жирные кислоты — ценное сырье для косметической и фармацевтической промышленности, а потому потенциально полезны для биотехнологии. Клеточные культуры низкой и высокой плотности обрабатывали растворами медного купороса и ацетата меди в разных концентрациях и наблюдали за микроорганизмами в течение 28 дней.

Результаты показали, что культуры, где клеток изначально было меньше, чувствительнее к воздействию загрязнителя — возможно, они менее эффективно связывали тяжелый металл, кроме того, за счет низкой плотности загрязнителю было проще попасть во все клетки. Выяснилось также, что для водорослей более токсична медь в составе купороса, чем в составе ацетата. Это авторы объясняют тем, что избыток серы (купорос представляет собой сульфат меди) также токсичен для наземных микроорганизмов.

К неоднозначным выводам исследователи пришли, когда проанализировали, как разное по продолжительности воздействие меди влияло на микроорганизмы из различных систематических групп. Так, длительное воздействие не обязательно приводило к полной гибели организмов, например, эустигматофитовые водоросли приспособились и даже эффективнее наращивали свою биомассу. В целом авторы отмечают, что чувствительность к тяжелым металлам у разных видов и даже штаммов одного вида может многократно различаться.

«Это значит, что недостаточно просто выбрать какой-либо вид организма-биоиндикатора и постоянно использовать его для разных анализов. Большую роль играют также длительность воздействия, плотность культуры, форма, в которой поступает загрязнитель, среда для выращивания и многое другое. Мы продолжим наши эксперименты и постараемся найти микроводоросли, идеальные для отслеживания пороговых концентраций тяжелых металлов, их снижения до приемлемых и, вполне возможно, способных производить ценные биотехнологические продукты даже на загрязненных почвах», — рассказывает руководитель проекта, поддержанного грантом РНФ, Евгений Мальцев, кандидат биологических наук, ведущий научный сотрудник ИФР РАН.

 

Информация и фото предоставлены пресс-службой Российского научного фонда