СЭМ-фотография титаната кальция-меди, свойства которого изучили уральские ученые. Фото: Нина Мельникова

СЭМ-фотография титаната кальция-меди, свойства которого изучили уральские ученые. Фото: Нина Мельникова

 

Новые данные о свойствах титаната кальция-меди — полупроводника, способного накапливать много энергии под действием электрического поля, — получили ученые Уральского федерального университета (УрФУ, Екатеринбург) совместно с коллегами из Института химии твердого тела УрО РАН. По их словам, результаты исследования позволят разработать целый ряд новых элементов для микроэлектроники, а также создать концепцию, объясняющую уникальные свойства материала.

Статья опубликована в Journal of Physics and Chemistry of Solids.

Диэлектрическая проницаемость — характеристика материалов, не проводящих ток. Под действием внешнего электрического поля происходит поляризация диэлектрика, например, за счет образования пар связанных ионов, в результате чего вещество накапливает энергию, объяснили ученые.

Титанат кальция-меди, или ССТО, — давно известный полупроводник, для которого одновременно характерны хорошая электропроводимость и гигантская диэлектрическая проницаемость, в 1000–10000 раз превосходящая показатели других материалов с этим эффектом. Хотя это свойство ССТО известно более 20 лет, объяснения данному феномену до сих пор не было дано, сообщили специалисты.

Ученые УрФУ и ИХТ УрО РАН, исследовав ряд оксидов на основе ССТО, уточнили объяснение его свойств и приступили к созданию новой концепции, объясняющей этот феномен. Кроме того, удалось найти способ обработки ССТО в условиях высоких давлений и температур, после которой диэлектрическая проницаемость материала увеличивается в 10 раз.

«Две главные модели, объясняющие феномен ССТО, — IBLC, считающая приоритетным фактором диэлектрической проницаемости размер границ между зернами, из которых состоит материал, и процессы поляризации в области этих границ, и NBLC, считающая, что значение имеют размеры самих зерен и процессы поляризации внутри них. Хотя наши результаты подкрепляют NBLC, мы работаем над созданием более общей модели, учитывающей сильные стороны обеих предшественниц», — объяснила доцент кафедры физики конденсированного состояния и наноразмерных систем УрФУ Нина Мельникова.

По словам ученых, десятикратный прирост диэлектрической проницаемости в их экспериментах был обусловлен именно увеличением размеров зерен вещества. Однако вся совокупность полученных данных не вписывается ни в одну из моделей полностью, что указывает на необходимость разработки нового объяснения этого феномена.

«Керамические изделия из ССТО, обработанного по нашей технологии, имеют большой потенциал в микроэлектронике в качестве элементов для накопителей энергии с большим диапазоном температур, в качестве среды для миниатюрных конденсаторов или в качестве полупроводниковых резисторов с нелинейным сопротивлением», — рассказал ведущий инженер кафедры физики конденсированного состояния и наноразмерных систем УрФУ Абдулло Мирзорахимов.

На основе перечисленных элементов, состоящих из ССТО с мелким зерном, как объяснили специалисты, возможна разработка новых систем оперативной памяти и многослойных конденсаторов, широко востребованных в современной электронике. Керамика с крупным зерном будет полезна при защите линий электропередачи и любой электроники от скачков напряжения.

Производство предложенных учеными УрФУ элементов электроники, по их словам, полностью реализуемо на базе российских технологий и производственных мощностей.

В дальнейшем научный коллектив намерен продолжить фундаментальные работы по объяснению феномена высокой диэлектрической проводимости ССТО, а также получить ряд новых материалов на его основе.

Исследование проведено в рамках выполнения проекта «Приоритет-2030».

 

Информация предоставлена пресс-службой Уральского федерального университета

Источник фото: urfu.ru