Материалы портала «Научная Россия»

0 комментариев 621

Нейросети ученых Пермского Политеха помогут не «отапливать улицу»

Ученые разработали интеллектуальный модуль для управления локальной системой теплоснабжения. Нейросети помогут точно и оперативно рассчитывать температуру теплоносителя на выходе из котельной

Ученые Пермского Политеха разработали интеллектуальный модуль для управления локальной системой теплоснабжения. Нейросети помогут точно и оперативно рассчитывать температуру теплоносителя на выходе из котельной. Технология позволяет поддерживать ее в норме у потребителей, избегать необоснованного перегрева теплоносителя и экономить средства на отоплении. У разработки пока нет аналогов в России. Результаты исследования разработчики опубликовали в статье.

Пример моделируемой древовидной структуры теплосети (ТК - тепловые коллекторы,

Пример моделируемой древовидной структуры теплосети (ТК - тепловые коллекторы,

МКД - многоквартирные дома)

– Сейчас достаточно широко используют блоки управления, которые автоматически поддерживают заданную температуру на выходе из котельной. Необходимые значения определяет оператор, главным образом ориентируясь на термометр и доступную обратную связь. Наша разработка предполагает управление с помощью таких нейросетей, которые используют в расчетах не только текущее значение температуры окружающей среды, но и разумный прогноз. Это позволяет заранее оценить температуру носителя и избежать «запаздывания», – рассказывает доцент кафедры вычислительной математики, механики и биомеханики Пермского Политеха, кандидат технических наук Владимир Онискив.

Для «обучения» нейросети ученые использовали большой объем статистических данных. В него вошли синхронизированные температуры теплоносителя в различных точках тепловой сети и температуры окружающей среды.  

Ученые опробовали интеллектуальный модуль, встроив его в программно-аппаратную автоматизированную систему управления «Aurora. Тепловой баланс в ЖКХ», которую разработала и использует одна из компаний Пермского края. В результате комплекс позволяет автоматически регулировать температуру теплоносителя на выходе из котельной, учитывая прогноз изменения погодных условий.

Архитектура нейросети

Архитектура нейросети

 

– Чтобы обеспечить комфортные тепловые условия в домах потребителей, теплоснабжающие организации должны постоянно мониторить температурное состояние сети. Но этот сервис пока недоступен для большинства тепловых компаний, поэтому они страхуют свои риски, поддерживая более высокие значения температуры теплоносителя. В результате жители зачастую вынуждены переплачивать за коммунальные услуги, – объясняет исследователь.

По словам ученых, использование нейросети в процессах управления тепловой сетью позволяет экономить топливо и не допустить его перерасхода. При резких изменениях погоды этот эффект становится особенно значимым. Экономия газа может достигать 10-15 % в зависимости от наружной температуры воздуха и общего состояния теплосетей.

Многослойные нейронные сети и сети глубокого обучения способны предсказывать необходимую температуру котла, учитывая прогноз погоды и особенности движения теплоносителя. 

В процессе создания интеллектуального модуля ученые проанализировали различные виды нейросетей. Итоговая архитектура состоит из 224 нейронов, упорядоченных в три слоя. Рассчитанная температура теплоносителя на выходе из котельной обеспечивает те значения температуры на входе в дом, которых требуют нормативы.

 

Информация и фото предоставлены пресс-службой Пермского Политеха

 

Пермский Политех локальная система теплоснабжения нейросети тепловая сеть

Назад

Социальные сети

Комментарии

Авторизуйтесь, чтобы оставить комментарий

Информация предоставлена Информационным агентством "Научная Россия". Свидетельство о регистрации СМИ: ИА № ФС77-62580, выдано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций 31 июля 2015 года.