Интервью на портале «Научная Россия»

0 комментариев 1453

В поисках материальной основы памяти

Член-корр. РАН Павел Милославович Балабан об устройстве человеческой памяти и главных загадках современной нейробиологии

"На долгую память" — пишем мы на открытках или подарках. Эти слова означают, что подаренная вещь будет напоминать о нас и радовать (или нет) её обладателя долгие годы. Ведь, к сожалению, с возрастом память человека слабеет. Поэтому её нужно тренировать и поддерживать в хорошей форме. О формировании памяти, её типах и главных нейробиологических особенностях — наша беседа с Павлом Милославовичем Балабаном. 

Название изображения

Павел Милославович Балабан – доктор биологических наук, главный научный сотрудник Института высшей нервной деятельности и нейрофизиологии Российской академии наук, член-корреспондент РАН.

— Что такое память с точки зрения нейробиологии?

— Память — это процесс адаптации или приспособления любого организма к внешней среде. У высших животных — млекопитающих, человека — память приобрела особые черты: речь идет об ассоциативных формах, а также о разделении по времени действия (кратковременная, промежуточная и долговременная память). Особый интерес для ученых представляет именно долговременная память — то, что остается у нас в голове, в нашем мозге после того, как мы чему-то научились.

Представьте память компьютера. Когда в него загружают множество разных файлов, память переполняется очень быстро. У нас в голове происходит примерно то же самое, однако переполнения нет. Считается, что лимита памяти у позвоночных животных нет. Между тем, устройство мозга, организация памяти — остаются главными загадками науки в XXI веке.

— Какие элементы нашего организма имеют непосредственное отношение к формированию памяти?

— Учитывая, что память — это адаптивное изменение в поведении, в работе нервных сетей, в молекулярной субклеточной структуре, то можно сказать, что практически все части организма имеют отношение к памяти. Поведение — это движение, которое изменяется в процессе обучения (обучение напрямую связано с памятью). Однако изменения в поведении должны где-то сохраняться. Должен быть некий материальный носитель.

Ученые последние 20-30 лет пытались найти ответ, исследуя белки. Блокируя синтез белков, специалисты заметили, что новая память не образуется. Сейчас ясно, что белки наверняка участвуют в механизме формирования памяти, но не являются определяющими. В любом процессе важную роль играет исполнитель. В армии, например, есть главнокомандующий и есть солдаты, которые воюют. Без солдат, разумеется, война невозможна. Однако войну выигрывают генералы, старшие офицеры. Без их команд солдаты будут бессмысленно передвигаться. В рамках этой метафоры белки в нашем организме — это солдаты. Без них невозможно образование новой памяти, нормальной жизнедеятельности и т.д. Но, судя по всему, в организме существует некий командный центр.

Считается, что ядро каждой нервной клетки и работа ее генетического аппарата и есть командный пункт нервной системы. Именно эти участки отвечают за то, сколько белков будет синтезировано. Далее уже синтезированные белки будут идти «в бой» и занимать свое рабочее место.

Дальнейшие исследования показали, что белки действительно не могут быть материальными носителями памяти, поскольку их средний срок жизни — 2-3 дня. Потом их заменяют новые «солдаты». Тем не менее, блокировка синтеза белка или целой биохимической системы реально влияет на память. Однако это влияние не специфическое.

— Долгое время научное сообщество искало так называемые молекулы памяти. Что известно о них сегодня?

— Таблетка памяти вызывает интерес, особенно среди молодежи. Множество фильмов снято на эту тему. Конечно, всем очень хочется съесть какую-нибудь «химию» и не тратить время на обучение. Сегодня известны молекулы, которые обеспечивают возникновение новой памяти в определенных местах. Если бы у нас была техническая возможность доставить молекулы избирательно только в тысячу нужных точек из триллионов возможных, то можно было бы изменить долговременную память. Конечно, часть новой информации осталась бы на короткое время. Но всё дело в том, что такие молекулы (как правило, это белки) живут дни. Поэтому нам нужно воздействовать на управляющую систему. А здесь возникает сложность.

На сегодняшний день неизвестно, где ее искать. Серьезные исследования на эту тему только начинают проводить некоторые специалисты.

Существует молекула под названием протеинкиназа М-зета. Это фермент, который отвечает за связи между нервными клетками. Если ее уничтожить избирательно в нужном месте, то какой-то вид памяти пропадает. При этом управляющая система может восстановить утраченный фрагмент, если нужная порция белка вновь вернется на место.

Важно понимать, что природа разработала уникальные, фантастические методы избирательной доставки элементов в нужные места. А у экспериментаторов таких методов пока нет.

По сравнению с многообразием и красотой природы, с тем, как всё устроено, наши методы абсолютно не совершенны.

Например, нервная система человека включает сто миллиардов нейронов. У каждого нейрона есть связь с десятками тысяч «соседей». Чтобы сформировать новую память, предположим, о том, что на стене висит белый листок бумаги, необходимо изменить связи в тысячах мест, не затронув при этом остальные связи между нейронами. Как эту задачу решает природа? В нашем мозге одновременно (при этом избирательно) активируются тысячи связей ровно в тот момент, когда мы смотрим на листок бумаги, висящий на стене. Другие нейроны и связи между ними никак не затрагиваются. Меняется только то, что активируется. Примитивнейший способ, но элегантный и простой.

Сегодня над решением подобной задачи бьются фармакологи, медики. Если бы мы умели избирательно в нужных местах менять связи между нейронами, так как это делает природа, многие патологии удалось бы вылечить.

Многие годы ученые пытались повлиять на эту адресность. Как оказалось, эту задачу можно решить с помощью методов нейрогенетики. Ясно, что мозг — самый сложный элемент в организме человека. Работа с нейронами на генетическом уровне намного сложнее, чем с другими типами клеток. Поэтому данных пока не так много. Сейчас появляются новые способы управления. Например, в конкретные нейроны внедряются нужные гены. Далее этими клетками можно управлять с помощью света, химических веществ или с помощью температуры. Способы довольно экзотичные, поэтому пока они рассматриваются в рамках фундаментальных научных исследований. Но я уверен, что в ближайшие 10 лет подобные методы войдут в практику медицины.

— Вы уже упомянули, что память бывает кратковременной, долговременной, промежуточной. Насколько сильно отличаются процессы их формирования?

— Момент запуска формирования памяти всегда один. Вопрос в том, почему некоторые вещи мы забываем через минуту, а другие откладываются на всю жизнь? По большей части это связано с тем, как долго происходят изменения в молекулярной среде, то есть в каждой конкретной клетке, которая отвечает за память. Ясно, что кратковременные изменения, которые длятся несколько секунд, сформируют кратковременную память. Если изменения длятся на протяжении десятков минут, формируется промежуточная память. Изменения на протяжении 5-6 часов, и это доказано экспериментально, меняют работу генетического аппарата в ядре клетки, поэтому в данном случае образуется долговременная память.

Как это происходит? Большинство людей уверены, что в рамках этого процесса меняются и гены. Поэтому сразу оговорюсь, что это не так, и память не передается по наследству, память не изменяет структуру наших генов или последовательность ДНК.

У каждой клетки организма, будь то клетка печени или клетка мозга, одинаковый набор генов. При этом в клетке печени работают около 20% имеющихся генов, а в клетках мозга — до 80%. В этом и состоит главное отличие: в мозге работают много тысяч разных нервных клеток, тогда как клетки печени и других органов почти одинаковые. Речь идет не только о разнообразии, а в целом об ином способе метаболического действия. Кстати, мозг потребляет большую часть энергии, вырабатываемую организмом. Это необходимо для работы нервных клеток. И именно на этом основаны пластичность и процесс запоминания мозгом новой информации.

Память для мозга — это основа жизнедеятельности. Каждый нейрон, каждая нервная клетка существует в собственном диапазоне активности и биохимической системы. Еще 10 лет назад не было даже гипотез о том, что есть основа памяти. Сегодня известна довольно простая схема: у каждого нейрона есть предыстория. Из стволовой клетки получается либо нейрон, либо глия. Нейрон встает на свое место и образует связи. До конца жизни конкретный нейрон будет стоять на своем месте и отвечать за образованные им связи и за выработку определенных медиаторов.

Медиаторы играют в этом процессе не последнюю роль. Возьмем, например, серотонин — известный гормон счастья. Ген, вырабатывающий серотонин может работать на 40% от максимально возможного уровня. У каждого гена есть активаторы и репрессоры. Не меняя структуру гена, мы можем изменять степень его активности и уровень работы. Такой тип регуляции называется эпигенетическим. Интересно и то, что в мозге есть собственный механизм регуляции. Если организму недостает чего-то, он сам посылает сигналы — сигнальные молекулы, которые заставляют гены работать эффективнее. Если ничего не изменится, то клетка может погибнуть от собственного плохого существования.

Память основана как раз на подобных надгенетических изменениях, когда меняется уровень экспрессии генов. Из-за этого меняется и количество белка. Транспортная система активируется, чтобы доставить этот белок для создания связей между нейронами. Эти обратные связи, а, главное, адресность чрезвычайно важны. Без обратной связи ни один живой организм не проживет и часа. Обратные связи не только отвечают за правильную работу систем организма, но и возвращают эффективность работы генетического аппарата в норму.

Вернемся к типам памяти. Если клетка не изменилась, память не образовалась. Если произошли небольшие изменения, эффективность связей изменилась, следовательно, информация задействовала уже другие точки. Внешне это проявляется в том, что поведение человека меняется, адаптируется.

Мы входим в ванную и твердо знаем, что полотенце висит справа. Переехав в новую квартиру, мы вешаем полотенце слева. Вначале мы путаемся, но через несколько дней уже автоматически тянемся к полотенцу слева. Адаптация — это основа жизнедеятельности организма, в которой главенствующую роль играет именно память.

— Можно ли изменить память?

— Вмешаться в развитие памяти можно, блокируя синтез белка через определенные промежутки времени после какого-то события. Это как раз то, чем занимались экспериментаторы, пытаясь исследовать долговременную память. Если в течении 2-6 часов после события нарушить нормальную работу нервной системы, то память, скорее всего, не образуется. Так проявляется эффект амнезии. Если человека ударили тяжелым предметом по голове, то он просто забывает о том, что с ним происходило последние несколько часов. Это связано с тем, что при травме выделяются химические вещества, которые стирают информацию о том, что происходило ранее.

— В какой части мозга сосредоточена память?

— Этот вопрос долгое время не давал покоя ученым в XIX и XX веках, когда еще не было генетических инструментов и методов электрофизиологии. Что делали ученые? Например, удаляли мозжечок. Единственное, что удалось показать, что точные движение страдают. То есть мозжечок имеет отношение к точности выполнения определенных операций или движений.

Помимо этого, пытались извлекать зрительную кору и другие части мозга. Всё это было сделано для того, чтобы грубо установить, за какую сенсорную модальность — звук, зрение, движение и прочее — ответственна та или иная часть мозга. Однако с памятью возникли сложности. Почему?

Если убрать всю кору больших полушарий мозга собаки (подобные опыты проводил И.П. Павлов), она всё равно адаптируется, живет, пусть и медленнее, но обучается. Существует такое понятие как «компенсация». Мозг обладает гигантской компенсаторной возможностью. Это связано, прежде всего, с огромным количеством нервных клеток. Если мы удалим половину мозга, остальная половина будет хорошо работать. Известны случаи, когда люди жили без целого полушария мозга.

Сказать точно, где расположена память до сих пор невозможно. Есть понимание, что зрительная образная память связана со зрением, слуховая память связана с корковыми структурами, которые первыми воспринимают слуховую информацию. Известно также и то, что за процесс принятия решений, который неразрывно связан с памятью, с накопленным опытом, ответственны определенные места в так называемой новой коре. Подозрения на эти ассоциативные области коры падали неоднократно. Благодаря развитию новых методов точно установлено, что принятие решений связано именно с этими областями и поведенческими явлениями.

На молекулярном уровне мы пока не можем определить, какие структуры клеток отвечают за формирование памяти. Набор экспрессированных генов разный в разных областях мозга. Сложность в том, что современные исследователи могут работать лишь с малыми кусочками мозга. Информации о работе сотни или даже тысячи нейронов недостаточно, чтобы точно понимать работу всей структуры. К тому же, каждый нейрон уникален. И таких уникальных нейронов — сотня миллиардов.

Сейчас одно из главных направлений, требующих огромных вложений, посвящено исследованию генома каждой отдельной нервной клетки. Это вызов для современных нейробиологов. Во многих странах разрабатываются серьезные исследовательские программы в области изучения мозга. Надеюсь, что и в нашей стране программа, которая уже рассматривается правительством, также будет принята.

— Множество книг, различных интернет-вебинаров предлагают людям «прокачать» память с помощью определенных практик. Как вы считаете, реально ли с помощью каких-то инструментов или приложений улучшить память?

— Это очень важный и интересный вопрос. С одной стороны, мозг, конечно, уникален. С другой стороны, это один из многих органов нашего организма. У каждого из нас есть мышцы. И все знают, что если эти мышцы не тренировать, то они могут атрофироваться. При этом количество мышечных волокон не меняется. Просто они становятся слабее и тоньше, а мышцы уменьшаются в объеме. Если вновь начать упражняться, мышцы становятся сильнее и больше.

На самом деле, в мозге происходит примерно то же самое. Если его не развивать, связи ослабевают и отмирают. Любая мыслительная деятельность создает новые крепкие связи между нейронами. Это особенно важно для детей до 14-16 лет. Но здесь важно не допускать ошибку, которой подвержены многие родители. Они пытаются развивать память у детей 2-3 лет. Это неправильно. Ученые и медики доказали, что до 6 лет у детей активно образуются и отмирают новые связи. И не нужно бороться с тем, что дети многое забывают. Это нормально.

Поэтому дети идут в школу в возрасте 6-7 лет. Здесь они уже знакомятся с абстрактно-логическими понятиями, категориальностью окружающей среды и так далее. Примерно к 25 годам мозг завершает процесс морфологического развития. После 25 лет каждый человек существует в том диапазоне связей, который он сам для себя создал. Но даже с этим набором связей можно улучшать память с помощью мыслительной деятельности и упражнений.

— Расскажите, над чем вы работаете сегодня?

— В целом наш Институт работает по всем направлениям нейробиологии. Мой личный интерес всегда был связан с ассоциативной памятью в рамках простых моделей памяти животных, когда можно «пощупать» каждую нервную клетку, каждый синаптический контакт. На протяжении долгих лет мы исследовали память на уровне «солдат», то есть исполнителей — молекул белков, ионных каналов, электрических проявлений.

Сегодня мы пытаемся понять, какие процессы происходят на уровне регуляции геномного аппарата нервной клетки при формировании памяти. В целом, эпигенетика — наиболее актуальное, на мой взгляд, направление современных исследований. Необходимо также изучить, как меняется эпигенетическое управление при патологии — болезни Альцгеймера или Паркинсона. Любая патология связана с неправильной экспрессией определенных генов. Если мы поймем, где содержится ошибка, то найдем и способы исправить ее, подправив работу генов.

— Каковы главные задачи современной нейробиологии?

— Я бы не выделял одну главную задачу. Она сразу ограничивает ваше видение научной картины. Поэтому расскажу о значимых исследованиях. Например, мы участвуем в международном проекте по изучению эволюции нервной системы и памяти на самом примитивном уровне. Речь идет о скоплении нескольких сотен клеток — о невидимом глазу организме трихоплаксе, напоминающем капельку слизи. Считалось, что донервные животные не обладают нервной системой. Однако при анализе каждой клетки выяснилось, что у них в геноме есть гены натриевых каналов и гены медиаторов. Даже на таком раннем этапе эволюции нервной системы уже заложены последовательности ДНК, которые определяют будущее развитие нейронов. Подобные исследования, как мне кажется, проливают свет на эволюцию нервной системы, в том числе памяти.

 

долговременная память кратковременная память мозг нейробиология павел балабан память работа мозга эпигенетика

Назад

Социальные сети

Комментарии

Авторизуйтесь, чтобы оставить комментарий

Информация предоставлена Информационным агентством "Научная Россия". Свидетельство о регистрации СМИ: ИА № ФС77-62580, выдано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций 31 июля 2015 года.