Материалы портала «Научная Россия»

Учёные МГУ в сотрудничестве с китайскими учеными уточнили гравитационную постоянную двумя независимыми методами

Учёные МГУ в сотрудничестве с китайскими учеными уточнили гравитационную постоянную двумя независимыми методами
Гравитационная постоянная G — одна из фундаментальных констант в физике, применяемая при расчётах гравитационного взаимодействия материальных тел

Сотрудники МГУ имени М.В. Ломоносова совместно с учёными из КНР уточнили гравитационную постоянную, используя два независимых друг от друга метода. Результаты исследования были сегодня опубликованы в престижном научном журнале Nature.

Гравитационная постоянная G — одна из фундаментальных констант в физике, применяемая при расчётах гравитационного взаимодействия материальных тел. Согласно Ньютоновскому закону всемирного тяготения, гравитационное взаимодействие двух материальных точек пропорционально произведению их масс и обратно пропорционально квадрату расстояния между ними. Измерения масс и расстояния в настоящее время значительно точнее измерений гравитационной постоянной, из-за чего все расчёты гравитационного взаимодействия тел обладали ощутимой систематической погрешностью.

Если для измерения гравитационных взаимодействий небесных тел погрешность была незначительной из-за большой массы объектов, то при исследовании взаимодействий атомов или элементарных частиц неточность гравитационной постоянной сильно искажает результаты. Предположительно, искажения результатов обуславливались систематической погрешностью из-за неточной оценки гравитационной постоянной. Тогда международная коллаборация учёных, в состав которой вошли сотрудники Государственного астрономического института имени П.К. Штернберга МГУ, решили уточнить гравитационную постоянную, используя два независимых друг от друга метода и крутильный маятник. 

«В эксперименте по измерению гравитационной постоянной требуется произвести абсолютные измерения трех физических величин: массы, длин, и времени. Абсолютные измерения всегда могут быть отягощены систематическими ошибками. Поэтому было важным получить два независимых результата, и если они совпадут между собой, то появляется уверенность, что они свободны от систематики. Наши результаты совпадают между собой на уровне трех стандартных отклонений»,— комментирует один из авторов исследования, заведующий лабораторией лазерных интерферометрических измерений ГАИШ МГУ Вадим Милюков.

Первый использованный авторами исследования подход — т.н. динамический метод (time-of-swing method, ToS). Исследователи вычисляли, как изменяется частота крутильных колебаний  в зависимости от положения двух пробных тел, служащих источниками масс. При сокращении расстояния между пробными телами, сила их взаимодействия увеличивается (что вытекает из уравнения гравитационного взаимодействия). В результате возрастает частота колебаний маятника. 

Используя этот метод, исследователи учли вклад упругих свойств нити подвеса маятника в погрешности измерения и постарались нивелировать их. Эксперименты проводились на двух независимых аппаратах, находящихся на расстоянии 150 м друг от друга. На первом ученые протестировали три различных вида волокна нити подвеса, чтобы проверить возможные ошибки, наведенные материалом. У второго значительно изменили конструкцию: использовали новое силикатное волокно, другой набор маятников и грузов для оценки ошибок, зависящих от установки.

Второй метод, которым исследователи измеряли G, — метод компенсации угловых ускорений (Angular acceleration feedback, AAF). В нём измеряется не частота колебаний, а угловое ускорение маятника,вызванное пробными телами. Этот метод измерения G не нов, однако для увеличения точность вычисления учёные кардинально изменили конструкцию экспериментальной установки: заменили алюминиевую подставку на стеклянную, чтобы материал не расширялся при нагревании. В качестве пробных масс использовали тщательно отшлифованные сферы из нержавеющей стали, близкие по форме и однородности к идеальным.

Для снижения роли человеческого фактора, практически все параметры были повторно измерены различными членами группы. Также подробно исследовано влияние температуры и вибраций при вращении на расстояние между пробными телами.

Полученные в результате экспериментов значения гравитационной постоянной (AAF – 6.674484(78)×10-11 m3 kg-1s -2 и ToS - 6.674184(78)×10-11 m3 kg-1 s-2) совпадают между собой на уровне трех стандартных отклонений. Кроме того, оба имеют наименьшую неопределенность из всех ранее установленных значений и согласуются со значением, рекомендованным Комитетом данных для науки и техники (CODATA) в 2014 году. Данные исследования, во-первых, дали большой вклад в определение гравитационной постоянной, а, во-вторых, показали, каких огромных усилий потребуется в будущем для достижения еще большей точности.

На рисунке: Схема экспериментальной установки с крутильным маятником // Источник: Q. Li, C.Xie, J.-P. Liu et al. Measurement of the gravitational constant using two independent methods. Nature. 2018.

гравитационная постоянная

Назад

Социальные сети

Комментарии

  • Эмиль, 31 августа 2018 г. 17:10:50

    Автором 1989г была найдена
    Формула связи фундаментальных физических констант,
    по которой, можно рассчитать постоянную G=6.674541(20) (данные на 1986г)
    приведенные данные в статье хорошо согласуются с этим значением, что подтверждает
    найденную формулу связи констант(материалы опубликованы 1992г )
    современные данные на 2014г дают значение G=6.67454935(45)

Авторизуйтесь, чтобы оставить комментарий