Материалы портала «Научная Россия»

Нобелевский лауреат Андрей Гейм и его коллеги из МФТИ разработали детектор терагерцовых волн на базе графена

Нобелевский лауреат Андрей Гейм и его коллеги из МФТИ разработали детектор терагерцовых волн на базе графена
Компактный детектор легко встроить в мобильный телефон или компьютерный чип

Нобелевский лауреат Андрей Гейм и его коллеги из МФТИ создали компактный детектор терагерцовых волн на базе графена, который можно легко встроить в мобильный телефон или компьютерный чип, сообщает РИА Новости. Принципы его работы и связанные с ним неожиданные открытия были представлены в журнале Nature Communications.

"Наш детектор является, по сути, компактным спектрометром терагерцового излучения, — по его сигналу можно узнать не только интенсивность света, но и его частоту. В лабораторных спектрометрах это достигается путем перемещения зеркал. Здесь же прибор имеет размер в несколько микрон", – объясняет Георгий Федоров из Московского Физтеха.

Терагерцовое излучение относится к числу самых перспективных направлений исследований в области оптики, микроэлектроники и в других высокотехнологичных сферах. В перспективе, волны такого типа можно приспособить для сверхскоростной передачи информации, наблюдения за работой живых клеток в режиме реального времени и множества других целей.

Одна из таких целей и самое известное свойство этого излучения – теоретическая способность делать наблюдаемые объекты "прозрачными". К примеру, недавно ученые из MIT научились читать закрытые книги, используя источник и приемник Т-излучения и специальную программу, анализирующую получаемые ими снимки.

Распространению подобных технологий, по словам Федорова и его коллег, мешает то, что все существующие сегодня детекторы подобных волн имеют огромные размеры, они устроены крайне сложно с технической точки зрения и потребляют большие количества электричества.

Причина этого проста – терагерцовые волны обладают слишком большой длиной для того, чтобы их можно было улавливать при помощи транзисторов, аналогичных тем, на базе которых построены светочувствительные матрицы во всех цифровых камерах и телескопах.

Ученые достаточно давно пытались преодолеть эту проблему, используя так называемые плазмонные резонаторы – наборы из микроскопических кусочков металлов, кремния или других веществ, покрывающих поверхность другого материала.

Подобные конструкции преобразуют свет, инфракрасное излучение или прочие типы электромагнитных волн в другие типы колебаний, а затем переизлучают его в виде "порций" фотонов с другими свойствами или преобразуют в импульсы электричества.

Первые попытки создать плазмонные устройства, взаимодействующие с "раздевающими лучами", закончились неудачно. Их работе мешали различные помехи и процессы внутри подобных резонаторов, гасившие коллективные колебания электронов, возникавшие внутри них при поглощении Т-лучей.

Федоров и его коллеги решили эту проблему, научившись выращивать подобные структуры на поверхности графена – абсолютно плоского углеродного материала, за изучение которого Андрей Гейм и Константин Новоселов получили Нобелевскую премию 2010 года.

Электроны внутри графена, как объясняют физики, могут двигаться с рекордно высокой скоростью, почти не сталкиваясь с препятствиями. Это натолкнуло их на мысль, что данный материал можно использовать в качестве базы для резонаторов, способных поглощать "раздевающие лучи".

Они успешно реализовали эту идею, подключив антенну, способную улавливать терагерцовые волны, к транзистору, собранному из двух пленок из нитрида бора, еще одного "плоского" материала, и двойного слоя графена, упакованного между ними.

Колебания электронов, возникающие внутри резонатора, будут влиять на то, как электричество движется через вход и выход этого транзистора. Это, как показали опыты Гейма и его коллег, позволяет не только "видеть" Т-лучи, но и "настраиваться" на отдельную часть их спектра, меняя напряжение на затворе транзистора.

Это же свойство их детища, по словам физиков, позволяет использовать его для обратной цели – изучения свойств плазмонных резонаторов и принципов их работы. Первые же опыты раскрыли несколько неожиданных и крайне интересных вещей.

"Эксперимент показывает, что преобразование терагерцового излучения в постоянный ток идет не совсем по предсказанным законам. Поначалу это огорчает, но затем заставляет нас искать подводные камни, приводящие к затуханию плазмонов. Некоторые из них мы уже обнаружили. Когда их удастся устранить, спектр применений этих детекторов станет еще шире", — заключает Дмитрий Свинцов, коллега Федорова.

Иллюстрация: © @tsarcyanide, пресс-служба МФТИ

 

Источник: ria.ru

графен детектор терагерцовых волн

Назад

Социальные сети

Комментарии

Авторизуйтесь, чтобы оставить комментарий

Информация предоставлена Информационным агентством "Научная Россия". Свидетельство о регистрации СМИ: ИА № ФС77-62580, выдано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций 31 июля 2015 года.