Сотрудники Института нанотехнологий, электроники и приборостроения Южного федерального университета исследовали влияние материалов на частоту мембран, что позволило выявить новые закономерности, которые могут усовершенствовать приборы для ультразвуковой диагностики.

Ранее в рамках диссертационной работы и проекта «Мембраны для акустических микроэлектромеханических датчиков» по конкурсу РФФИ «Аспиранты» ученые Института нанотехнологий, электроники и приборостроения ЮФУ проводили исследование, связанное с разработкой и изготовлением кремниевых мембран в качестве чувствительного элемента (элемент, который воспринимает внешнее физическое воздействие), и успешно их применили в волоконно-оптическом акустическом приемнике, который был разработан Институтом автоматики и процессов управления Дальневосточного отделения Российской академии наук (ИАПУ ДВО РАН.) Однако, по словам ученых, в датчиках, работающих на частотах свыше 20 кГц, применяются тонкопленочные пьезоэлектрики - это материалы, которые под воздействием электрического поля меняют свои размеры (деформируются), а под действием внешней силы, например, давления, способны генерировать электрический заряд. Исходя из этого у ученых появилась новая задача – оптимизировать мембраны для применения их в ультразвуковой медицинской диагностике.

«Мы решили, что оценка нескольких комбинаций материалов, а также их геометрических параметров поможет выявить, какие именно материалы подходят для применения в акустических микроэлектромеханических датчиках ультразвукового диапазона частот», - рассказала младший научный сотрудник Научно-образовательного Центра «Нанотехнологии» ИНЭП ЮФУ Софья Малохатко.

Мембраны, их еще называют датчиками, в таких приборах как правило состоят из кремния, изолятора, металла (в качестве электродов) и пьезоэлектрика. Тем не менее специалисты решили уйти от однослойных мембран (кремниевых) в сторону новых, не использовавшихся ранее в этой сфере, многослойных.  Цель работы заключалась в теоретическом исследовании влияния вариации конструкции и материалов пьезоэлектрического материала (ЦТС, ZnO) и металлических электродов (Al, Ti) на резонансную частоту акустических микроэлектромеханических датчиков.

«В нашем исследовании мы оценили влияние материалов на частоту мембран. Были проведены аналитические расчеты резонансной частоты для двух пьезоэлектрических материалов (цирконат-титанат свинца и оксид цинка), при которых менялись их толщина и площадь», - рассказала Софья Малохатко.

Исследование проводилось Софьей Малохатко под руководством член-корр. РАН, д.т.н., профессора ИНЭП Олега Агеева и к.т.н., доцента ИНЭП Евгения Гусева при финансовой поддержке РФФИ в рамках научного проекта по конкурсу «Аспиранты». Кроме того, данный проект ведется по одному из перспективных направлений федеральной программы «Приоритет 2030», победителем которой является Южный федеральный университет.

Обычно исследователи, работающие над изучением акустических датчиков, изучают определённую комбинацию материалов. Ученые ЮФУ в своей работе описали подход, позволяющий анализировать широкий диапазон конструкций и комбинаций материалов мембраны и оценивать их влияние на рабочий диапазон частот акустических микроэлектромеханических датчиков.

«Наше исследование носит в первую очередь оценочный характер, и его значимость в том, что, изучив массив значений рассчитанных частот, можно увидеть закономерности их изменения и подобрать комбинацию материалов, толщину и площадь мембраны для конкретной области применения», - отметила Софья Владимировна.

Итогом исследования стало получение массива значений резонансных частот для того, чтобы, выбрав значение частоты, можно было узнать, какие материалы и геометрические параметры позволят её получить.

По словам специалистов, с помощью результатов проведенного исследования возможна оптимизация конструкций датчиков для медицинской ультразвуковой диагностики, например, в допплерографии (ультразвуковое исследование сосудов, артерий и вен), поскольку в приборах ультразвуковой диагностики используются массивы пьезоэлектрических датчиков (преобразователей). Результаты исследования опубликованы в научном журнале Q4 квартеля Journal of Physics: Conference Series.

В ближайшем будущем ученые планируют изучить влияние других пьезоэлектрических материалов, таких как ниобат лития (LiNbO3) и титанат бария (BaTiO3).

 

Источник информации: Центр общественных коммуникаций Южного федерального университета

Источник фото: ru.123rf.com