Ученые Сколтеха и их коллеги получили с помощью 3D-принтера сплав из двух материалов, соотношение которых в его составе непрерывно меняется от одной области образца к другой. В результате сплав приобретает градиентные магнитные свойства, хотя ни один из исходных компонентов по своей природе не является магнитным материалом. Ученые также предложили теоретическое объяснение свойств сплава. Статья с описанием результатов исследования опубликована в издании The Journal of Materials Processing Technology.

3D-принтер, использованный в исследовании. Источник: Олег Дубинин и др./The Journal of Materials Processing Technology

3D-принтер, использованный в исследовании. Источник: Олег Дубинин и др./The Journal of Materials Processing Technology

 

Технология 3D-печати, которая еще недавно воспринималась лишь как инновационный метод быстрого прототипирования, сегодня превращается в полноценную промышленную технологию, которую применяют для изготовления деталей самолетов, медицинских имплантатов и протезов, ювелирных изделий, обуви на заказ и т.д.

Главное преимущество 3D-печати — возможность создавать объекты очень сложной формы, производить которые с помощью традиционных технологий литья, проката, штамповки или механической обработки либо слишком дорого, либо вовсе невозможно. 3D-печать ускоряет подготовку прототипа и тем самым дает производителю возможность идти на больший риск, а также обеспечивает бо́льшую гибкость с точки зрения персонализации продукта и выбора количества экземпляров в партии. Еще одно неоспоримое преимущество 3D-печати — низкий уровень отходов.

Однако у 3D-печати есть ограничения: объект, как правило, изготавливается целиком из однородного материала или однородной смеси. Если бы состав менялся от одной части изделия к другой, можно было бы получить образец с постоянно меняющимися свойствами. Например, стержень из сплава двух металлов с переменным соотношением компонентов: в одной точке 100% металла А, в другой — по 50% каждого металла, потом 100% металла Б и так далее. Соответственно, и свойства полученного материала, в том числе магнитные, могут градиентно изменяться, что делает его потенциально ценным для изготовления роторов двигателей, полос для магнитных кодирующих устройств, трансформаторов и проч.

В рамках исследования ученых Сколтеха и их коллег, опубликованного в The Journal of Materials Processing Technology, получен как раз такой материал. В роли исходных компонентов А и Б выступили два сплава: алюминиевая бронза (медь, алюминий и железо) и аустенитная нержавеющая сталь (железо, хром и никель и др.). Оба сплава парамагнитные, то есть они не притягиваются к магниту. Однако если их смешать, то получится так называемый «мягкомагнитный материал» ферромагнетик, который притягивается к постоянным магнитам.

Магнитные свойства металлического стержня непрерывно меняются с парамагнитных на ферромагнитные и обратно из-за изменения относительного содержания компонентов сплава — нержавеющей стали 316L и алюминиевой бронзы (Al-Bronze). Источник: Олег Дубинин и др./The Journal of Materials Processing Technology

Магнитные свойства металлического стержня непрерывно меняются с парамагнитных на ферромагнитные и обратно из-за изменения относительного содержания компонентов сплава — нержавеющей стали 316L и алюминиевой бронзы (Al-Bronze). Источник: Олег Дубинин и др./The Journal of Materials Processing Technology

 

«Из этих двух парамагнитных материалов мы получили градиентный сплав. Для этой цели мы использовали 3D-принтер InssTek MX-1000, который работает по принципу наплавки материала при помощи направленного энергетического воздействия, то есть подачи порошкообразного материала и его одновременного плавления при помощи лазера. У полученного материала наблюдались ферромагнитные свойства разной степени в зависимости от соотношения компонентов», — рассказывает ведущий автор исследования, сотрудник Лаборатории аддитивного производства Сколтеха Олег Дубинин.

«В рамках исследования мы также предложили теоретическое объяснение возникновению у сплава ферромагнитных свойств с точки зрения его атомной структуры, — продолжает ученый. — В то время как оба исходных материала имеют так называемую гранецентрированную кубическую кристаллическую структуру, комбинируя их, мы получаем объемно-центрированную кубическую структуру, которая является магнитной».

«Градиентные мягкомагнитные сплавы могут найти применение в машиностроении, например в производстве электродвигателей, — комментирует главный исследователь проекта, ведущий научный сотрудник Сколтеха Станислав Евлашин. — Полученные результаты показывают, что метод наплавки материала при помощи направленного энергетического воздействия позволяет не только получать градиентные материалы, используя 3D-печать, но и открывать новые сплавы. Кроме того, эта технология высокоэффективна и пригодна для быстрого изготовления крупногабаритных деталей».

Помимо исследователей из Сколтеха, в работе приняли участие ученые из Белгородского государственного национального исследовательского университета, НИЦ «Курчатовский институт» и Санкт-Петербургского государственного морского технического университета.

 

Источник информации и фото: Сколтех