Модель оптоволокна

Модель оптоволокна

 

Оптоволокно – это стеклянные нити, позволяющие передавать световой сигнал на большие расстояния без потерь и с высокой скоростью. Малые габариты, низкое энергопотребление, устойчивость к высоким и низким температурам, высокому давлению и агрессивным средам принесли популярность оптоволоконным изделиям. Их применяют в различных видах волоконно-оптических датчиков, используемых в навигационных приборах (компактные гироскопы), медицине (измерение давления, частоты сердечных сокращений, температуры), системах мониторинга (предупреждение о возможных разрушениях зданий и сооружений). Уникальные эксплуатационные характеристики таких изделий открывают широкую перспективу их использования в небе и под водой, в Арктике и в космосе. Как повысить эффективность этих изделий, выяснили ученые Пермского Политеха. Проведенное исследование способствует импортозамещению зарубежных технологий и вносит вклад в становление технологического суверенитета РФ. Разработка выполнена в рамках программы академического стратегического лидерства «Приоритет 2030».

Исследование, опубликованное в журнале «Polymers» (№18, 2022 г.), рассматривает поведение одного из популярных разновидностей специального оптического волокна под названием Panda в условиях температурных аномалий.

При этом в расчет принимались не только температурные и эксплуатационные нагрузки, но и механические деформации из-за контактного взаимодействия компонентов оптоволокна. Еще на этапе производства и тем более в ходе эксплуатации изделий из оптических волокон они взаимодействуют между собой, с металлическими и неметаллическими элементами, в том числе с собственным защитным покрытием. В случае исследуемого оптоволокна Panda оно представляет собой два слоя полимерного материала, обработанного УФ-излучением для обеспечения его прочностных и функциональных характеристик.

— В рамках технологии производства получается оптическое волокно, поперечное сечение которого может отличаться от стандартов. Отклонения от стандартных габаритов или стандартного положения элементов волокна влияет на его работу. Проводя моделирование, мы варьировали эти параметры, чтобы определить параметры волокна, которое будет стабильно воспринимать изменения температуры и другие внешние воздействия. Кроме того, определив, как защитное покрытие и его толщина влияют на поведение конструкции в целом, можно решить задачу о минимизации габаритных размеров защитного покрытия без потери его функциональности. А значит, сделать оптоволокно более компактным и за счет этого уменьшать размеры изделий из него, — поясняет старший научный сотрудник, доцент кафедры вычислительной математики, механики и биомеханики ПНИПУ, кандидат технических наук Анна Каменских.

Ученые Пермского Политеха построили математическую модель оптоволокна, в которой учли остаточные напряжения в волокнах, возникающие в процессе их производства, и характеристики защитного покрытия. Это позволило исследователям оценить способность оптоволокна передавать сигнал под воздействием негативных факторов, которым оно подвергается в процессе практического применения (изгиб, натяг, контакт с внешними объектами).

— Созданная модель позволяет исследовать отклонения от проектных размеров всех элементов конструкции, а также рассмотреть свободную намотку волокна. Благодаря описанию материалов волокна в рамках сложных моделей поведения мы получили более полное представление о работе конструкции в широком диапазоне температур, — рассказывает ведущий инженер, старший преподаватель кафедры вычислительной математики, механики и биомеханики ПНИПУ Юлия Лесникова.

— При работе в условиях существенных перепадов температур волокно постоянно деформируется, из-за чего может снижаться качество передаваемого сигнала. Проведя серию численных экспериментов, удалось установить, что на это влияют не только внешние факторы, но и полимеры защитного покрытия, - комментирует полученные результаты доцент кафедры вычислительной математики, механики и биомеханики ПНИПУ, кандидат технических наук Александр Труфанов. — При отрицательных температурах внутренняя мягкая прослойка защитного покрытия как бы затвердевает, а при положительных температурах, наоборот, размягчается. Данные эффекты по-разному сказываются на внутренних напряжениях и влияют на оптические характеристики волокна.

Применение полученных данных при производстве описанного оптоволокна и проектировании изделий из него позволит повысить эксплуатационные характеристики оптоволоконных датчиков, в которых они используются.

 

Информация и фото предоставлены пресс-службой Пермского Политеха