Источник фото: ru.123rf.com

Исследователи из совместной лаборатории Сколтеха и Университета Шарджи и их коллеги из Института AIRI автоматизировали анализ снимков сетчатки глаза для диагностики диабетической ретинопатии — повреждения сетчатки при сахарном диабете, которое может приводить к слепоте. В зависимости от сложности случая и квалификации врача на рассмотрение сети сосудов на одном снимке сетчатки и вынесение диагноза без применения искусственного интеллекта уходит 10–40 минут. А представленное в журнале Pattern Recognition Letters решение выдает ответ мгновенно, после чего врачу остается лишь проверить и подтвердить результат.

При помощи прибора под названием фундус-камера офтальмологи делают снимки глазного дна, на которых видны сетчатка и сеть кровеносных сосудов в ней. Врач изучает такое изображение и вручную сегментирует его в специальной компьютерной программе, выделяя сосуды разной длины, ширины и извилистости. Особенности сосудистой сети сетчатки могут указывать на наличие у пациента диабетической ретинопатии и других глазных или сердечно-сосудистых заболеваний, включая атеросклероз. Однако сегментация изображения вручную очень сложна, требует много времени и подвержена ошибкам.

И вот ученым удалось автоматизировать эту сложную задачу, причем новое решение на базе ИИ не просто сэкономит время врачей, но и, возможно, устранит некоторые человеческие ошибки. Систему обучили на надежной выборке снимков, каждый из которых размечен сразу двумя высококвалифицированными специалистами. В результате искусственный интеллект отлично показал себя в испытании на трех современных датасетах. В частности, решение показало точность более 97% и чувствительность выше 84% на популярной в отрасли базе данных DRIVE.

«В этом исследовании добиться 97% точности было не так уж и трудно — это объясняется особенностями данных. Очень важна чувствительность. Она отражает способность модели распознавать микрососуды, с которыми у предыдущих моделей были сложности», — отметил первый автор исследования Мелаку Гетахун, аспирант Сколтеха по программе «Инженерные системы».

Сложность сегментации связана с большим количеством значимых мелких деталей на снимках сетчатки. Их нередко упускают и ранее предложенные для этой задачи нейросети, и даже некоторые врачи при ручной разметке изображений.

«В этой работе мы предлагаем иную архитектуру нейросети, чем в более ранних решениях, которые упускали микрососуды сетчатки, — рассказал Гетахун. — Мы также ввели алгоритм, который настраивает выдачу модели за счет понимания сути данных на снимке сосудов сетчатки. Тем самым мы избегаем случаев, когда относящиеся к сосудам пиксели ошибочно распознаются как фон».

Одна из сложностей, с которыми столкнулись исследователи, связана с ограниченным размером датасета. Дважды размеченные экспертами снимки — это обучающая выборка отличного качества, но, увы, их не так много, как хотелось бы.

«Из-за этого страдала способность модели к обобщению, распространению на те данные, которых модель не видела. Однако благодаря тщательному применению методов увеличения объема данных и их обработки нам удалось значительно улучшить результат, — прокомментировал исследование его руководитель с российской стороны, старший научный сотрудник Центра ИИ Сколтеха и руководитель группы «Доверенные и безопасные интеллектуальные системы» в Институте AIRI Олег Рогов. — Кроме того, даже после обновления архитектуры нейросети проблемы с неверной классификацией пикселей микрососудов как фона не исчезли полностью. Чтобы справиться с ними, мы внедрили адаптивный пороговый алгоритм, который значительно повысил чувствительность и точность».

Говоря о перспективах использования и развития своего решения, ученые отметили, что возможность обнаруживать крошечные нездоровые сосуды ценна с клинической точки зрения. Создатели системы надеются, что она будет развиваться и станет стандартным инструментом для скрининга глазных заболеваний. Инновационная технология позволит офтальмологам диагностировать патологии быстрее, точнее и раньше. А более раннее медицинское вмешательство повысит результативность лечения, ведь именно мелкие сосуды часто проявляют первые признаки патологий, связанных с глазами.

«Это будет способствовать ранней диагностике и предотвращению трудноизлечимых глазных заболеваний, таких как диабетическая ретинопатия, распространенная среди больных диабетом, а также других патологий микрососудов глаза», — добавил соавтор исследования, профессор Университета Шарджи Рифат Хамуди.

Освещенное в пресс-релизе исследование проведено совместной Лабораторией искусственного интеллекта для биомедицины (BIMAI-Lab) Сколтеха и Университета Шарджи. Заведующие лабораторией — старший преподаватель Сколтеха Максим Шараев и профессор Университета Шарджи Рифат Хамуди. В коллектив лаборатории входит руководитель исследования со стороны ОАЭ Ахмед Буридан; он обладает обширным опытом в области приложения искусственного интеллекта к анализу медицинских данных.

 

Источник информации: Сколтех

Источник фото: ru.123rf.com