Ученые Санкт-Петербургского государственного университета установили закономерности изменения формы и размера наночастиц, используемых в тераностике (инновационной области медицины), за счет добавления в структуру различных лантаноидов. Применение частиц определенной формы и размера важно при проведении противораковой терапии или МРТ-диагностики, где необходимо применять наиболее мелкие частицы, так как они легче проникают в клетки и способны свободно перемещаться по сосудам и венам, не закупоривая мелкие капилляры. Результаты исследования опубликованы в высокорейтинговом международном научном журнале Nanomaterials, графическое изображение работы ученых СПбГУ попало на обложку издания.

Тераностика — молодая и активно развивающаяся область медицины, которая исследует возможности создания и применения препаратов, позволяющих одновременно проводить диагностику заболеваний и их терапию с помощью специальных комбинированных материалов-препаратов. Создание таких материалов стало возможно только в последние годы — во многом в результате развития нанотехнологий. Эти препараты позволяют найти в организме пациента проблемное место, требующее лечения, доставить туда необходимое лекарство и сразу же в режиме реального времени визуализировать для врача пораженный участок (либо методами оптической спектроскопии, либо с помощью широко используемого метода магнитно-резонансной томографии). Как отмечают ученые, комбинированные препараты не оказывают негативного воздействия на организм пациента и доставляют меньше дискомфорта во время лечения.

Для разработки таких препаратов важна практическая составляющая, но есть и важные фундаментальные проблемы. Например, принципиальным является вопрос о связи полезных свойств лекарств с размерами микро- и наночастиц, в виде которых изготавливают препараты.

Ученые Санкт-Петербургского университета изучили наночастицы на основе фторидов натрия и иттрия и редкоземельных элементов — химически инертных и нерастворимых веществ, которые не наносят вреда организму. К тому же эти элементы, как правило, обладают более яркой люминесценцией (свечением) и в перспективе могут быть использованы в качестве красителей для люминесцентной микроскопии, а также в медицинских целях (например, при проведении неинвазивной диагностики опухолей).

Во время работы команда исследователей под руководством доктора химических наук доцента кафедры лазерной химии и лазерного материаловедения СПбГУ Андрея Мерещенко провела синтез нескольких десятков соединений, в каждом случае варьируя состав получаемого материала путем добавления различных солей редкоземельных элементов. Это было необходимо для накопления экспериментального материала для дальнейшего анализа.

«Целью этого большого исследования стал поиск закономерностей влияния природы редкоземельных элементов в составе препаратов на размер получаемых наночастиц. Для этого потребовалось провести немало однотипных исследований с контролируемым изменением состава частиц. Периодический закон дает нам возможность прогнозировать свойства еще неизвестных соединений на основании известных данных об их аналогах. Этот подход мы использовали как основной теоретический инструмент», — прокомментировал Андрей Мерещенко.

Ученые применили классический подход научной школы химиков СПбГУ, позволяющий находить и объяснять фундаментальные закономерности в свойствах веществ с помощью Периодического закона, открытого в 1869 году знаменитым универсантом Дмитрием Менделеевым.

В результате работы ученым удалось получить частицы размером от 80 до 1100 нанометров (один нанометр составляет одну миллиардную часть метра). Важно отметить, что размер и форма частиц прямо зависят от природы иона редкоземельного элемента. Эта зависимость носит немонотонный характер: частицы уменьшаются при переходе слева направо по ряду лантаноидов в Периодической системе от лантана до гадолиния (57–64-й элементы Периодической системы) и возрастают во второй части этого ряда — от гадолиния до лютеция (64–71-й элементы Периодической системы). Все частицы имеют форму шестиугольных призм, для которых соотношение диаметра к высоте тоже зависит от природы редкоземельного иона, что обеспечивает изменение геометрических параметров частиц при использовании различных компонентов препарата.

Ранее химики СПбГУ синтезировали новые люминесцентные наночастицы для использования в лазерной микроскопии, а также для диагностики различных заболеваний с применением контраста. Эти наночастицы также были созданы на основе редкоземельных металлов — иттрия и европия — с добавлением ионов гадолиния.

«Интересно было обнаружить, что именно в случае с гадолинием размер частиц оказывается минимальным. Ведь препараты на его основе наиболее перспективны для использования в МРТ-диагностике за счет своих магнитных свойств, аналогичные препараты уже можно найти. А уменьшение размера частиц позволяет повысить их проникающую способность в клетки с любым размером пор и, соответственно, применять их для любых живых тканей», — объяснил первый автор научной статьи Никита Богачев, старший преподаватель кафедры общей и органической химии СПбГУ.

В настоящее время коллектив продолжает работу и теперь нацелен на оптимизацию направленного синтеза частиц, обладающих многофункциональными свойствами: способных к излучению света под действием ультрафиолета, электромагнитного поля или других возмущений (люминесценции) и вместе с этим применимых в качестве состава МРТ-контрастов.

Исследования были проведены на оборудовании ресурсных центров Научного парка СПбГУ, позволившем провести анализ частиц с использованием инструментальных методов. В синтезе частиц приняли участие молодые сотрудники научного коллектива — обучающиеся 1–2-го курсов Санкт-Петербургского университета. Работа выполнена в рамках гранта президента Российской Федерации для государственной поддержки молодых российских ученых — докторов наук.

 

Информация предоставлена пресс-службой СПбГУ

Источник фото: ru.123rf.com