Ученые из Уральского федерального университета (УрФУ, Екатеринбург) в партнерстве с коллегами из Китая разработали архитектуру перовскитных светодиодов с красным излучением (PeLED). Новая архитектура позволяет минимизировать потери оптической энергии, значительно увеличить эффективность и длительность срока службы светодиодов. С ее помощью можно создавать высокопроизводительные светодиоды (эргономичные, с высокой яркостью и длительностью работы) для осветительных приборов, дисплеев телевизоров, компьютеров, планшетов, смартфонов и других электронных устройств. Статья с изложением содержания и результатов исследований опубликована в журнале Advanced Functional Materials. 

Ученые экспериментально установили, что пиковая квантовая эффективность (соотношение вложенной и вышедшей энергии) светодиодов с новой архитектурой — 21,2% — выше, чем у светодиода с плоской поверхностью. При одинаковом напряжении тока новый светодиод светит почти в 2,5 раза ярче, а длительность периода его продуктивной работы в 1,75 раза больше.

«При длине волны 666 нанометров и начальной яркости свечения 100 кандел/квадратный метр полученная пиковая квантовая эффективность модифицированного светодиода наблюдалась в течение почти 4807 часов. Это самый долгий срок высокопроизводительной службы в сравнении с аналогичными PeLED, имеющимися в мире. Например, длительность эксплуатации светодиода с такими же параметрами яркости и показателем эффективности 21,3% — всего 5 минут. КПД светодиода, срок службы которого при аналогичной яркости составляет 694 часа, — 6,2%», — рассказывает доцент кафедры электрофизики Уральского федерального университета, участник исследований и соавтор статьи Иван Жидков. 

Как правило, потери оптической энергии возникают в перовскитных светодиодах с плоской структурой межслойных интерфейсов. Это происходит из-за отражения и частичного поглощения функциональными слоями светодиода (перовскитным, дырочно-транспортным, электронно-транспортным слоями и слоем стекла) квантов света — фотонов. 

«Наш исследовательский коллектив решил проблему, модифицировав органический перовскитный излучатель PeLED и его световыводящие наноструктуры. Так, поверхность светодиода была усложнена определенным порядком многочисленных „узоров“ — „полусфер“ высотой несколько нанометров. Это привело к существенному улучшению светоотдачи и, как следствие, к значительному уменьшению повторного поглощения фотонов», — объясняет Иван Жидков.

При повышении светоотдачи напряжение электрического тока, необходимого для обеспечения яркости свечения светодиода, может быть снижено. Поэтому, когда поглощается меньшее количество фотонов, уменьшается и так называемый джоулев нагрев — тепловыделение внутри светодиодного устройства, которое вызывается электрическим током. Если в плоском светодиоде температура поверхности уже через 20 секунд повышалась до 32°C, а через 50 секунд — до 35°C, то в устройстве с узорчатой поверхностью температура достигала за 100 секунд 30°C и затем стабилизировалась на этом уровне. Снижение температуры светодиода предотвратило его термическую деградацию и продлило срок его службы.

Отметим, над созданием нового светодиода работали ученые Университета Сучжоу, Китайской академии наук, Восточно-Китайского педагогического университета (Шанхай) и Уральского федерального университета (Екатеринбург). Ранее исследовательский коллектив в журнале Advanced Science описал создание новых высокопроизводительных PeLED с небесно-голубым излучением. Способ получения этих светодиодных устройств отличается простотой и эффективностью, а сами светодиоды обладают большими для данного класса устройств размерами (100 и 400 мм2) и значительной пиковой квантовой эффективностью — 9,2% и 6,1% соответственно.

 

Справка

Светодиоды — полупроводниковые приборы, создающие оптическое излучение при пропускании через них электрического тока. Перовскитные светодиоды (PeLED) — многообещающие устройства для применения в приборах освещения и дисплеях следующего поколения. Их перспективные характеристики — технологичность и экономичность производства, высокий квантовый выход фотолюминесценции и особая яркость, экологичность. Однако, несмотря на быстрое развитие перовскитных светодиодов, их широкое практическое применение задерживается проблемой недостаточно продолжительной стабильности. Из-за повышения температуры, вызванного джоулевым нагревом, и других причин период непрерывной продуктивной работы PeLED ограничивается часами и даже минутами.

 

Фото: Илья Сафаров, пресс-служба УрФУ

Информация и фото предоставлены пресс-службой Уральского федерального университета