Физики из МФТИ изучили оптические свойства нитрида бора (незаменимого компонента для двумерных материалов) и обнаружили, что он обладает рекордным показателем преломления в ультрафиолетовом свете. Это значит, что материал может стать основой разработок в области нанофотоники, в частности заменить электронные компоненты в интегральных схемах компьютеров. Для демонстрации практического применения нитрида бора ученые сконструировали нанометровый волновод, показавший высокую эффективность. Работа опубликована в журнале Materials Horizons.
Фотонные устройства передают информацию с помощью фотонов и в скором времени могут заменить электронные, поскольку свет перемещается гораздо быстрее электронов, а при распространении сигнала в этом случае нет потерь и нагрева из-за сопротивления материала проводника. Однако минимальный размер фотонных элементов ограничен длиной волны проходящего света. Для создания нанометровых устройств необходимо использовать материалы, пропускающие ультрафиолетовые волны, длина которых менее 300 нанометров. Более того, материал должен обладать высоким показателем преломления, чтобы еще больше сжать волну, и быть доступным: недорогим и простым в производстве. Физики из МФТИ ищут соединения, которые удовлетворяют всем указанным условиям.
Научный сотрудник Центра фотоники и двумерных материалов МФТИ Георгий Ермолаев рассказывает: «Показатель преломления очень важен в фотонике. Чем он выше у материала, тем выше эффективность устройств, сделанных из него, тем проще управлять светом. Благодаря этому сейчас активно развивается целое направление исследований — высокорефрактивные материалы».
В последней работе ученые Физтеха исследовали оптические свойства гексагонального нитрида бора hBN и обнаружили, что он обладает рекордным показателем преломления в ультрафиолетовой области. Также физики разработали на основе нитрида бора оптические элементы: нанометровый волновод и хиральное зеркало.
Несмотря на применение материала в двумерной нанофотонике и оптоэлектронике, его оптические свойства изучались в достаточно узком диапазоне длин волн. Отчасти это связано с небольшим размером образцов нитрида бора, что затрудняет экспериментальные измерения. Физики из МФТИ смогли определить показатель преломления и анизотропии вещества в широком диапазоне от 250 до 1700 нанометров с помощью эллипсометрии и сканирующей оптической микроскопии. Максимальное значение показателя преломления в ультрафиолетовом свете на длине 250 нанометров составило 2,75, что позволяет создавать фотонные элементы порядка десятков нанометров. Столь миниатюрные устройства можно использовать в фотонных интегральных схемах компьютеров вместо электронных компонент.
Чтобы показать практические возможности нитрида бора, физики сконструировали 40-нанометровый волновод — канал, переносящий свет. Компьютерное моделирование показало, что свет в волноводе распространяется практически без оптических потерь, не затухая. Также ученые создали из нитрида бора модель хирального зеркала — устройства, которое отражает закрученный в одну сторону поляризованный свет и пропускает свет, закрученный в другую. Зеркало поможет отличать биомолекулы, имеющие одинаковые состав и строение, но несимметричные. Например, такой прибор нужен в фармакологии, поскольку описанные хиральные молекулы могут обладать различными свойствами.
Низкие оптические потери, высокий показатель анизотропии и рекордный показатель преломления в ультрафиолетовом свете делают нитрид бора перспективным материалом для создания нанофотонных устройств.
Георгий Ермолаев комментирует: «Ультрафиолетовая нанофотоника только зарождается: нужно уменьшать длину волны света, чтобы уменьшать размеры фотонных устройств. Мы показали, что нитрид бора — отличная платформа для этого, так как, помимо высокого показателя преломления, у него еще и гигантская оптическая анизотропия, которая также увеличивает его эффективность. А низкие оптические потери позволяют передавать информацию на большие расстояния практически без затухания. Мы нашли наконец-то мостик, который бы позволил перейти от электроники к фотонике, то есть использовать преимущества фотона по сравнению с электроном. Сейчас работаем над тем, чтобы уже в реальной фотонной интегральной схеме показать это превосходство».
Информация и фото предоставлены пресс-службой МФТИ