Брайан Кокс и Джефф Форшоу, авторы книги «Квантовая вселенная. Как устроено то, что мы не можем увидеть», рассказывают о фундаментальной модели мироустройства — квантовой механике, каким образом ученые пришли к таким странным, контринтуитивным выводам и почему держатся за нее. Мы уже рассказывали о книге (см. рецензию «Брайан Кокс и Джефф Форшоу: в квантовой вселенной все не так, как на самом деле»). В предлагаемых читателям отрывках рассказывается, как выглядит гениальное прозрение Менделеева с квантовой точки зрения, что такое звезда и как доказать, что белые карлики существуют.
Глава 7
Вселенная на булавочной головке (и почему мы не проваливаемся сквозь землю)
То, что мы не проваливаемся сквозь землю, само по себе несколько удивительно. Объяснять это тем, что земля твердая, не особенно эффективно, во многом благодаря открытию Резерфорда, что атомы — это почти полностью пустое пространство. Ситуация удивляет еще больше, потому что, насколько мы знаем, фундаментальные частицы природы размером не обладают вовсе. Иметь дело с частицами, «не имеющими размера», явно проблематично и, вероятно, даже невозможно.
Но ничто из сказанного в предыдущих главах не предполагает и не требует от частиц физической протяженности. Понимание их как действительно точечных объектов необязательно неверно, даже если бросает вызов здравому смыслу — если у читателя остался хоть какой-то здравый смысл на этой стадии книги о квантовой теории. Конечно, весьма возможно, что будущие экспериме ты, например на Большом адронном коллайдере, покажут, что электроны и кварки вовсе не истинно элементарные частицы, но нынешние эксперименты этого не подтверждают, поэтому в фундаментальных уравнениях физики частиц нет места для их «размера».
Нельзя сказать, что с точечными частицами не возникает проблем — идея конечного заряда, зажатого в бесконечно малый объем, довольно трудна для понимания, — но все же удается каким-то образом обойти теоретические трудности. Похоже, что развитие квантовой теории гравитации — основная проблема фундаментальной физики — намекает на конечный размер, но свидетельств пока попросту недостаточно, чтобы физики отказались от столь полюбившейся идеи элементарных частиц. Подчеркнем еще раз: точечные частицы не имеют размера, поэтому вопрос «Что случится, если я расщеплю электрон надвое?» не имеет никакого смысла — половинки электрона не бывает.
Приятный бонус работы с элементарными фрагментами материи, не имеющими никакого размера, состоит в том, что мы без проблем можем представить, что вся видимая Вселенная когда-то была сжата в объект размером с грейпфрут или даже с булавочную головку. Как бы ни шла кругом голова от таких мыслей — трудно вообразить, как до размеров горошины сжимается гора, не говоря уже о звезде, галактике и тем более 350 миллиардах больших галактик в обозримой Вселенной, — нет никаких причин объявлять такое сжатие невозможным.
И действительно, современные теории происхождения Вселенной непосредственно оперируют свойствами, которые она имела в подобном астрономически плотном состоянии. Такие теории на первый взгляд кажутся нелепыми, но имеют ряд подтверждающих свидетельств. В последней главе нам встретятся объекты с плотностью если не как у «Вселенной в булавочной головке», то точно как у «горы в горошине»: белые карлики — объекты с массой звезды и объемом Земли — и нейтронные звезды, имеющие схожую массу и сжатые в идеальные шары размером с крупный город.
И это не объекты из научной фантастики; астрономы наблюдают их и проводят точнейшие измерения, а квантовая теория позволяет вычислить их свойства и сравнить с данными наблюдений. Первый шаг на пути к пониманию белых карликов и нейтронных звезд состоит в том, чтобы обратиться к гораздо более прозаичному вопросу, с которого мы и начали эту главу: если Земля — по большей части пустое пространство, то почему мы сквозь нее не проваливаемся?
У этого вопроса длительная и почтенная история, и ответ на него не был сформулирован удивительно долго: он появился лишь в 1967 году в статье Фримена Дайсона и Эндрю Ленарда. Они принялись за дело, потому что некий физик пообещал бутылку винтажного шампанского тому, кто сможет доказать, что материя не может сжаться сама по себе. Дайсон говорил, что доказательство было исключительно сложным и туманным, но они показали, что материя способна быть стабильной, только если электроны будут подчиняться так называемому принципу Паули — одному из самых удивительных явлений в нашей квантовой Вселенной.
Начнем с цифр. В прошлой главе мы видели, что структуру простейшего атома водорода можно понять, найдя разрешенные квантовые волны, которые помещаются внутри потенциальной ямы протона. Это позволило разобраться, по крайней мере, с количественной точки зрения, почему атомы водорода испускают свет именно в таком диапазоне. Будь у нас время, мы могли бы вычислить и энергетические уровни в атоме водорода. Любой студент-физик в какой-то момент обучения проводит эти вычисления, и они прекрасно сходятся с экспериментальными данными.
Кстати, о предыдущей главе: упрощение «частица в ящике» было довольно удачным, поскольку содержало все критические моменты, которые мы хотели подчеркнуть. Однако теперь нам понадобятся еще более точные вычисления, учитывающие, что реальный атом водорода существует в трех измерениях. Для нашей частицы в ящике мы рассматривали только одно измерение и получили серию энергетических уровней, помеченных числом n. Низший энергетический уровень был назван n = 1, следующий — n = 2 и т. д.
Когда расчеты распространяются на случай для трех измерений, оказывается (что, впрочем, не должно удивлять), что для характеристики всех разрешенных энергетических уровней необходимы три числа. Традиционно они помечаются как n, l и m и называются квантовыми числами (в этой главе не следует путать m с массой частицы).
Квантовое число n — это эквивалент числа n для частицы в ящике. Оно принимает целые значения (n = 1, 2, 3 и т. д.), а энергия частицы стремится к увеличению с увеличением n.
Возможные значения l и m оказываются связаны с n; l должно быть меньше n и может равняться нулю, например, если n = 3, то l может быть 0, 1 или 2; m может принимать любое значение от минус l до плюс l с целочисленными шагами. Так, если l = 2, то m может равняться –2, –1, 0, +1 или +2. Мы не собираемся объяснять, откуда берутся все эти числа, потому что к нашему пониманию предмета это ничего не добавит.
Достаточно сказать, что четыре волны на рис. 6.9 имеют (n, l) = (1,0), (2,0), (2,1) и (3,0) соответственно (для всех этих волн m = 0)*. Как мы уже говорили, квантовое число n здесь главное: оно контролирует разрешенные значения энергии для электрона. В небольшой степени разрешенные значения энергии зависят и от значения l, но проявляется это только при очень точных измерениях испускаемого света. Бор не принимал его во внимание, впервые вычисляя энергию спектральных линий водорода, и его исходная формула выражалась исключительно через n. От m энергия электрона совершенно не зависит, пока атом водорода не помещен в магнитное поле (собственно, m и называется магнитным квантовым числом), но это не значит, что m не важно.
* Технически, как мы уже говорили в предыдущей главе, решение уравнения Шрёдингера должно быть пропорционально сферической гармонике, поскольку потенциальная яма вокруг протона сферическая и симметричная, а не прямоугольный ящик. Связанная с этим угловая зависимость порождает квантовые числа l и m. Радиальная зависимость решения дает главное квантовое число n.
Чтобы понять это, вернемся к нашим числам. Если n = 1, сколько существует возможно разных энергетических уровней? Применив сформулированные выше правила, узнаем, что l и m могут в случае n = 1 равняться только нулю, так что энергетический уровень будет лишь 1. Теперь проведем расчеты для n = 2: l может принимать два значения, 0 и 1. Если l = 1, то m может равняться –1, 0 или +1, то есть получается еще 3 энергетических уровня (всего 4). Для n = 3 l может составлять 0, 1 или 2. Для l = 2 m может равняться –2, –1, 0, +1 или +2, что дает 5 уровней. Итак, всего получается 1 + 3 + 5 = 9 уровней для n = 3. И так далее. Запомните числа для трех первых значений n: 1, 4 и 9.
Теперь посмотрим на рис. 7.1, где показаны первые четыре ряда периодической таблицы химических элементов, и подсчитаем, сколь ко элементов в каждом ряду. Разделив эти значения на 2, мы получим 1, 4, 4 и 9. Важность этого вскоре выяснится.
Честь расположения химических элементов подобным образом обычно приписывается русскому химику Дмитрию Менделееву, который представил ее 6 марта 1869 года на заседании Русского химического общества. Это было задолго до того, как придумали вычислять разрешенные энергетические уровни атома водорода. Менделеев расположил элементы в порядке их атомных весов, что на современном языке соответствует количеству протонов и нейтронов внутри атомных ядер, хотя, конечно, в то время он и этого тоже не знал.
Расположение элементов на самом деле соответствует числу протонов в ядре (количество нейтронов значения не имеет), но для самых легких элеме тов эта поправка не имеет значения, благодаря чему Менделеев и сумел расставить их в правильном порядке. Он решил выстроить элементы в ряды и столбцы, отметив, что некоторые элементы обладают очень похожими химическими свойствами, несмотря на разницу атомных весов; вертикальные столбцы как раз и объединяют подобные химические элементы — так, гелий, неон, аргон и криптон в крайнем правом столбце таблицы считаются инертными газами.
И Менделеев не только правильно зафиксировал существующее расположение, но и предсказал наличие новых элементов, которые должны были заполнить пробелы в его таблице: элементы 31 и 32 (галлий и германий) были открыты в 1875 и 1886 годах соответственно. Эти открытия подтвердили, что Менделееву удалось нащупать нечто очень важное в строении атомов, но пока никто не знал, что это такое.
Удивительно, что в первом ряду 2 элемента, во втором и третьем их 8, а в четвертом — 18. Эти числа ровно в два раза больше тех, что получились у нас после подсчета разрешенных энергетических уровней в водороде. Почему?
Как мы уже упоминали, элементы в периодической системе упорядочены слева направо по рядам в соответствии с количеством протонов в ядре, что совпадает с количеством электронов, которое могут содержать эти атомы. Помните, что все атомы электрически нейтральны: положительные электрические заряды протонов точно уравновешиваются отрицательными зарядами электронов. Здесь явно что-то интересное связано с химическими свойствами элементов и разрешенными энергетическими уровнями, который электроны могут иметь во время вращения по орбитам вокруг ядра.
Мы можем представить, как более тяжелые атомы строятся из более легких, к которым по очереди добавляются протоны, нейтроны и электроны. Нужно держать в уме, что каждый раз при добавлении лишнего протона в ядро мы должны добавить и дополнительный электрон на один из энергетических уровней. Арифметические упражнения помогут создать систему, которую мы видим в периодической таблице, если просто допустить, что каждый энергетический уровень может содержать два и только два электрона. Посмотрим, как это работает.
У водорода только один электрон, который попадает на уровень n = 1. У гелия два электрона, которые тоже разместятся на уровне n = 1. Теперь уровень n = 1 заполнен. Чтобы получить литий, мы должны добавить третий электрон, но он уже пойдет на уровень n = 2. Следующие 7 электронов, соответствующие следующим 7 элементам (бериллий, бор, углерод, азот, кислород, фтор и неон), могут тоже уместиться на уровне n = 2, потому что там имеются 4 места, соответствующие l = 0 и l = 1, m = –1, 0 и +1. Таким образом можно найти место для всех элементов до неона включительно.
На неоне уровни n = 2 заполняются, и начиная с натрия мы переходим к n = 3. Следующие 8 электронов один за другим начинают заполнять уровни n = 3; сначала электроны идут на l = 0, затем на l = 1. Это происходит для всех элементов третьего ряда вплоть до аргона. Четвертый ряд таблицы можно объяснить, если предположить, что он содержит все оставшиеся электроны n = 3 (то есть 10 электронов с l = 2) и электроны n = 4 с l = 0 и 1 (всего 8 электронов), так что в итоге и получается волшебное число — 18 электронов.
Мы набросали, как электроны заполняют энергетические уровни, для самого тяжелого элемента в нашей таблице — криптона (с его 36 электронами) — на рис. 7.2.
Чтобы изложенное относилось к науке, а не к занимательной математике, предстоит сделать несколько пояснений. Во-первых, нужно объяснить, почему химические свойства элементов из одного и того же вертикального столбца схожи. Из нашей схемы ясно, что первый элемент каждого из трех первых рядов начинает процесс заполнения уровней с увеличивающимся значением n. А именно: водород открывает этот процесс, вводя единственный электрон на пустой до того момента уровень n = 1, с лития начинается второй ряд — первый электрон появляется на пустом до того уровне n = 2, а с натрия третий ряд — электрон занимает пустой до того уровень n = 3. Третий ряд немного выбивается, потому что на уровне n = 3 может находиться 18 электронов, а в самом третьем ряду все же не 18 элементов.
Можно предположить, что именно происходит: первые 8 электронов заполняют уровни n = 3 с l = 0 и l = 1, а затем (по каким-то причинам) случается переход на четвертый ряд. Четвертый ряд содержит оставшиеся 10 электронов на уровнях n = 3 с l = 2 и 8 электронов на уровнях n = 4 с l = 0 и l = 1. То, что ряды не совсем соответствуют значению n, свидетельствует лишь о том, что связь между химией и подсчетом энергетических уровней не так проста, как можно было бы подумать. Однако сейчас известно, что калий и кальций, два первых элемента в четвертом ряду, имеют электроны на уровне n = 4, l = 0, а следующие 10 элементов (от скандия до цинка) имеют электроны на запоздалых уровнях n = 3, l = 2.
Чтобы понять, почему заполнение уровней n = 3 и l = 2 откладывается до скандия, нужно объяснить, почему уровни n = 4, l = 0, на которых находятся электроны в калии и кальции, обладают меньшей энергией, чем уровни n = 3, l = 2.
Помните, что «основное состояние» атома будет характеризоваться конфигурацией электронов с самой низкой энергией, поскольку в любом возбужденном состоянии атом будет всегда терять энергию при испускании фотона. И говоря, что «этот атом содержит такие-то электроны, находящиеся на таких-то энергетических уровнях», мы сообщаем вам конфигурацию электронов с самой низкой энергией. Конечно, мы еще не пытались подсчитывать энергетические уровни, так что пока не можем и расположить их по возрастанию или убыванию энергии.
Подсчитать разрешенную для электрона энергию для атомов более чем с двумя электронами на самом деле очень сложно, и даже случай для двух электронов (атом гелия) не так-то прост. Предположение о ранжировании уровней по увеличению числа n — результат гораздо более простых расчетов по атому водорода, для которого верно, что уровень n = 1 обладает наименьшей энергией, за ним следуют уровни n = 2, потом уровни n = 3 и т. д.
Очевидный вывод из сказанного — элементы на правом краю периодической таблицы соответствуют атомам, множество уровней которых заполнено до конца. Например, для гелия заполнен уровень n = 1, для неона — уровень n = 2, у аргона плотно заселен уровень n = 3, по крайней мере для l = 0 и l = 1. Мы можем еще немного развить эти идеи, таким образом поняв ряд очень важных положений в химии. К счастью, мы пишем не учебник по химии, так что можно говорить кратко. Может показаться, что мы пытаемся уложить всю тему в один абзац, но все же попробуем.
Основное наблюдение в том, что атомы могут скрепляться, обмениваясь электронами: мы встретимся с этой идеей в следующей главе, когда будем разбираться, как пара атомов водорода соединяется в молекулу водорода. Общее правило таково: элементы «предпочитают» полностью заполнять все свои энергетические уровни.
В случае с гелием, неоном, аргоном и криптоном уровни уже заполнены, так что этим элементам уже «хорошо»: им «неинтересно» реагировать с другими. Другие же элементы могут «пытаться» заполнить свои уровни, обмениваясь электронами с другими элементами. Водороду, например, нужен один дополнительный электрон для заполнения уровня n = 1. Этого можно достичь, обменявшись электронами с другим атомом водорода.
Таким образом формируется молекула водорода; ее химическая запись — H2. Это обычная форма существования водорода. У углерода 4 электрона из возможных 8 на уровнях n = 2, l = 0 и l = 1, и ему «хотелось бы» получить еще 4, чтобы заполнить все уровни. Этого можно добиться путем соединения с четырьмя атомами водорода. Образуется CH4 — газ, известный под названием метан.
Атом углерода может соединиться и с двумя атомами кислорода, которые сами нуждаются в двух электронах, чтобы закончить уровень n = 2. Это приводит к образованию CO2 — двуокиси углерода. Кислород может закончить свой уровень и с помощью двух атомов водорода, образуя воду — H2O. И так далее. Это основы химии: атомы стремятся заполнить свои энергетические уровни электронами, даже посредством реакции с соседом. Это их «желание», которое восходит к стремлению находиться в состоянии наименьшей энергии, управляет образованием всех соединений — от воды до ДНК. В мире, который богат на водород, кислород и углерод, легко понять, почему так часто встречаются углекислый газ, вода и метан.
Это все очень вдохновляет, но нужно объяснить и последний кусочек головоломки: почему только два электрона могут занимать каждый энергетический уровень? Так утверждает принцип Паули, и он очень важен для связи в единое целое всего, что мы обсуждаем. Без него электроны толпились бы на низшем энергетическом уровне вокруг каждого ядра, и никакой химии не было бы. Это не самая приятная перспектива, потому что тогда не было бы молекул, а следовательно, и жизни на Земле.
Утверждение о том, что каждый энергетический уровень могут занимать два и только два электрона, кажется каким-то произвольным. До того как эта идея была впервые предложена, никто не высказывал предположений по этому поводу. Первый прорыв в этой области был совершен Эдмундом Стоунером, сыном профессионального игрока в крикет (который прошел восемь калиток в игре с Южной Африкой в 1907 году, если вы читаете Wisden Cricketers’ Almanack) и бывшим студентом Резерфорда, впоследствии возглавившим физический факультет в Университете Лидса.
В октябре 1924 года Стоунер предположил, что на каждом энергетическом уровне (n, l, m) должно находиться два электрона. Паули развил идеи Стоунера и в 1925 году опубликовал правило, которому годом позже Дирак присвоил его имя. Принцип Паули состоит в том, что ни одна пара электронов в атоме не может иметь одни и те же квантовые числа.
Однако он столкнулся с проблемой: все указывало на то, что на самом деле два электрона могут иметь одинаковый набор значений n, l и m. Паули обошел проблему, просто введя новое квантовое число. Это был анзац: он не знал, чему соответствует это число, но оно могло принимать одно из всего двух значений. Паули признавался: «Более точно причин существования этого правила мы указать не можем».
Новое открытие случилось в 1925 году и было изложено в работе Джорджа Уленбека и Сэмюэла Гаудсмита. В поисках возможности проведения точных измерений атомных спектров они связали дополнительное квантовое число Паули с реальным физическим свойством электрона, которое носит название спин*. Основная идея спина довольно проста и восходит еще к 1903 году: она значительно старше квантовой теории. Через несколько лет после открытия собственно электрона немецкий физик Макс Абрахам предположил, что электрон — это мельчайшая вращающаяся электрически заряженная сфера. Если бы это было верно, то электроны подвергались бы действию магнитных полей в зависимости от ориентации поля по отношению к оси их вращения.
* Понятие спина было предложено, чтобы объяснить расщепление спектральной линии основного состояния атома серебра в магнитном поле. — Прим. ред.
В статье 1925 года, опубликованной через три года после смерти Абрахама, Уленбек и Гаудсмит отмечали, что модель вращающегося шара не может быть верной, потому что для подтверждения экспериментальных данных электрон должен вращаться быстрее скорости света. Но сам дух идеи был верен: у электрона действительно есть свойство под названием спин, которое действительно влияет на его поведение в магнитном поле.
Однако на самом деле идея спина — это непосредственное и довольно тонкое последствие теории специальной относительности Эйнштейна, получившее должную оценку только после того, как Поль Дирак в 1928 году записал уравнение, описывающее квантовое поведение электрона. Для наших целей сейчас нужно только указать, что существует два типа электрона, которые мы будем называть «спин вверх» и «спин вниз». Они отличаются противоположными значениями момента вращения, то есть словно бы вращаются в противоположных направлениях.
Очень жаль, что Абрахам лишь немного не дожил до открытия истинной природы спина электрона, потому что так и не отказался от своего подозрения, что электрон — это мельчайшая сфера. В некрологе Абрахаму в 1923 году Макс Борн и Макс фон Лауэ писали: «Он был достойным оппонентом, сражался достойным оружием и не старался замаскировать поражения причитаниями и не относящимися к делу аргументами… Он любил свой абсолютный эфир, свои уравнения поля, свой неподвижный электрон, как повзрослевший человек любит свою первую страсть, воспоминания о которой не затмит никакой последующий опыт». Если бы все наши оппоненты были такими, как Абрахам!
Эпилог:
Смерть звезд
Умирая, многие звезды заканчивают свой путь в качестве сверхплотных шаров ядерной материи, переплетенной с множеством электронов. Это так называемые белые карлики. Такой будет и судьба нашего Солнца, когда оно примерно через 5 миллиардов лет исчерпает запасы ядерного топлива, и судьба еще более 95% звезд нашей Галактики. Пользуясь только ручкой, бумагой и немного головой, можно вычислить наибольшую возможную массу таких звезд.
Эти вычисления, впервые предпринятые в 1930 году Субраманьяном Чандрасекаром, с помощью квантовой теории и теории относительности позволили сделать два ясных прогноза. Во-первых, это было предсказание самого существования белых карликов — шариков материи, которые, по принципу Паули, спасает от разрушения сила собственной гравитации. Во-вторых — если мы отвлечемся от листка бумаги со всякими теоретическими каракулями и посмотрим в ночное небо, мы никогда не увидим белый карлик с массой, которая бы более чем в 1,4 раза превосходила массу нашего Солнца. Оба этих предположения отличаются невероятной дерзостью.
Сегодня астрономы уже занесли в каталоги около 10000 белых карликов. У большинства из них масса составляет примерно 0,6 массы Солнца, а самая большая зафиксированная — немногим менее 1,4 массы Солнца. Это число — 1,4 — свидетельство триумфа научного метода. Оно опирается на понимание ядерной физики, квантовой физики и специальной теории относительности Эйнштейна — трех китов физики XX века. При его вычислении требуются также фундаментальные константы природы, с которыми мы уже встречались в этой книге. К концу эпилога мы выясним, что максимальная масса определяется отношением
Смотрите внимательно на то, что мы записали: результат зависит от постоянной Планка, скорости света, гравитационной постоянной Ньютона и массы протона. Удивительно, что мы можем предсказать наибольшую массу умирающей звезды с помощью сочетания фундаментальных констант. Трехстороннее сочетание гравитации, относительности и кванта действия, появляющееся в уравнении (hc / G)1/2, называется планковской массой, и при подстановке цифр оказывается, что она равна примерно 55 мкг, то есть массе песчинки.
Поэтому, как ни странно, предел Чандрасекара вычисляется с помощью двух масс — песчинки и протона. Из таких ничтожных величин образуется новая фундаментальная единица массы Вселенной — масса умирающей звезды. Мы можем довольно долго объяснять, как получается предел Чандрасекара, но вместо этого пойдем немного дальше: мы опишем собственно вычисления, потому что они и есть самая интригующая часть процесса.
У нас не получится точного результата (1,4 массы Солнца), но мы приблизимся к нему и увидим, как профессиональные физики делают глубокие выводы с помощью последовательности тщательно продуманных логических ходов, постоянно обращаясь при этом к хорошо известным физическим принципам. Ни в один из моментов вам не придется верить нам на слово. Сохраняя холодную голову, мы будем медленно и неотвратимо приближаться к совершенно поразительным заключениям.
Начнем с вопроса: что такое звезда? Можно почти без ошибки сказать, что видимая Вселенная состоит из водорода и гелия — двух самых простых элементов, сформированных в первые несколько минут после Большого взрыва. После примерно полумиллиарда лет расширения Вселенная стала достаточно холодной, чтобы более плотные области в газовых облаках под действием собственной гравитации стали собираться вместе. Это были первые зачатки галактик, и внутри них, вокруг более мелких «комков», начали формироваться первые звезды.
Газ в этих прототипах звезд, по мере того как они коллапсировали, становился все горячее, что известно любому обладателю велосипедного насоса: при сжатии газ нагревается. Когда газ достигает температуры около 100000 °C, электроны больше не могут удерживаться на орбитах вокруг ядер водорода и гелия, и атомы распадаются, образуя горячую плазму, состоящую из ядер и электронов. Горячий газ пытается расшириться, противодействуя дальнейшему схлопыванию, но при достаточной массе гравитация одерживает верх.
Так как протоны имеют положительный электрический заряд, они будут взаимно отталкиваться. Но гравитационный коллапс набирает силу, температура продолжает повышаться, и протоны начинают двигаться все быстрее. Со временем при температуре в несколько миллионов градусов протоны будут двигаться максимально быстро и приблизятся друг к другу так, что слабое ядерное взаимодействие возобладает.
Когда это произойдет, два протона смогут вступить в реакцию друг с другом: один из них спонтанно становится нейтроном, одновременно испуская позитрон и нейтрино (точно так, как показано на рис. 11.3, с. 235). Освободившись от силы электрического отталкивания, протон и нейтрон сливаются в результате сильного ядерного взаимодействия, образуя дейтрон. При этом высвобождается огромное количество энергии, поскольку, как и в случае с образованием молекулы водорода, связывание чего-то вместе высвобождает энергию.
При одном слиянии протонов высвобождается совсем мало энергии по повседневным стандартам. Один миллион слияний пар протонов дает энергию, равную кинетической энергии комара в полете или энергии излучения 100-ваттной лампочки за наносекунду. Но в атомарном масштабе это гигантское количество; кроме того, помните, что мы говорим о плотном ядре сжимающегося газового облака, в котором количество протонов на 1 см3 достигает 1026. Если все протоны в кубическом сантиметре сольются в дейтроны, освободится 1013 джоулей энергии — достаточно для обеспечения годовой потребности небольшого города.
Слияние двух протонов в дейтрон — начало самого разнузданного синтеза. Сам этот дейтрон ищет возможности слиться с третьим протоном, образуя более легкий изотоп гелия (гелий-3) и испуская фотон, а эти ядра гелия затем порождают пару и сливаются в обычный гелий (гелий-4) с испусканием двух протонов. На каждой стадии синтеза высвобождается все больше энергии. Кроме того, позитрон, появившийся в самом начале цепочки превращений, тоже быстро сливается в окружающей плазме с электроном, образуя пару фотонов.
Вся эта освобожденная энергия направляется в горячий газ, состоящий из фотонов, электронов и ядер, который противостоит сжатию материи и останавливает гравитационный коллапс. Такова звезда: ядерный синтез сжигает находящееся внутри ядерное топливо, образуя внешнее давление, которое стабилизирует звезду, не давая осуществиться гравитационному коллапсу.
Разумеется, когда-то водородное топливо заканчивается, ведь его количество конечно. Если энергия больше не высвобождается, прекращается внешнее давление, гравитация вновь вступает в свои права, и звезда возобновляет отложенный коллапс. Если звезда достаточно массивна, ее ядро может прогреться до температуры примерно 100000000 °С. На этой стадии гелий — побочный продукт сжигания водорода — воспламеняется и начинает свой синтез, образуя углерод и кислород, и гравитационный коллапс снова прекращается.
Но что происходит, если звезда недостаточно массивна, чтобы начался гелиевый синтез? Со звездами, масса которых менее половины массы нашего Солнца, случается нечто крайне удивительное. При сжатии звезда разогревается, но еще до того, как ядро достигает температуры 100000000 °С, кое-что приостанавливает коллапс. Это кое-что — давление электронов, которые соблюдают принцип Паули. Как мы уже знаем, принцип Паули жизненно необходим для понимания того, как атомы остаются стабильными. Он лежит в основе свойств материи. И вот еще одно его достоинство: он объясняет существование компактных звезд, которые продолжают свое существование, хотя уже выработали все ядерное топливо. Как же это работает?
Когда звезда сжимается, электроны внутри нее начинают занимать меньший объем. Мы можем представлять электрон звезды через его импульс p, тем самым ассоциируя его с длиной волны де Бройля, h / p. Напомним, что частица может быть описана только таким волновым пакетом, который по крайней мере не меньше связанной с ней длиной волны*. Это значит, что если звезда достаточно плотная, то электроны должны перекрывать друг друга, то есть нельзя считать, что они описываются изолированными волновыми пакетами.
* Как мы знаем из главы 5, частицы определенного импульса на деле описываются бесконечно длинными волнами, так что мы должны разрешить некую неопределенность импульса, если хотим локализовать частицу. Но нет смысла говорить о частице с определенной длиной волны, если она локализуется на расстоянии меньше этой самой длины.
Это, в свою очередь, обозначает, что для описания электронов важны эффекты квантовой механики, в особенности принцип Паули. Электроны уплотняются до тех пор, пока два электрона не начинают претендовать на занятие одной и той же позиции, а принцип Паули гласит, что электроны не могут этого делать. Таким образом, и в умирающей звезде электроны избегают друг друга, что помогает избавиться от дальнейшего гравитационного коллапса.
Такова судьба более легких звезд. А что будет с Солнцем и другими звездами подобной массы? Мы ушли от них пару абзацев назад, когда пережигали гелий в углерод и водород. Что будет, когда гелий тоже кончится? Они тоже должны будут начать сжиматься под действием собственной гравитации, то есть электроны будут уплотняться. И принцип Паули, как и в случае с более легкими звездами, в итоге вмешается и прекратит коллапс.
Но для самых массивных звезд даже принцип Паули оказывается не всесилен. Когда звезда сжимается и электроны уплотняются, ядро разогревается, и электроны начинают двигаться все быстрее. В достаточно тяжелых звездах электроны приближаются к скорости света, после чего происходит нечто новое. Когда электроны начинают двигаться с такой скоростью, давление, которое электроны способны развивать для противостояния гравитации, понижается, и эту задачу они уже не способны решить. Они просто больше не могут бороться с гравитацией и останавливать коллапс. Наша задача в этой главе — рассчитать, когда это произойдет, и мы уже рассказали самое интересное. Если масса звезды в 1,4 раза и больше превосходит массу Солнца, электроны терпят поражение, а гравитация выигрывает.
Так заканчивается обзор, который послужит основой наших вычислений. Теперь можно двигаться дальше, позабыв о ядерном синтезе, потому что горящие звезды лежат вне сферы наших интересов. Мы будем пытаться осознать, что происходит внутри мертвых звезд. Мы постараемся понять, как квантовое давление уплотнившихся электронов уравновешивает силу гравитации и как это давление уменьшается, если электроны двигаются слишком быстро. Таким образом, суть нашего исследования — противостояние гравитации и квантового давления.
Хотя все это не так важно для последующих расчетов, мы не можем все бросить на самом интересном месте. Когда массивная звезда схлопывается, у нее остаются два варианта развития событий. Если она не слишком тяжелая, то в ней продолжится сжатие протонов и электронов, пока они не синтезируются в нейтроны. Так, один протон и один электрон спонтанно превращаются в нейтрон с испусканием нейтрино, опять же благодаря слабому ядерному взаимодействию. Подобным образом звезда неумолимо превращается в небольшой нейтронный шарик.
По словам русского физика Льва Ландау, звезда становится «одним гигантским ядром». Ландау написал это в своей работе 1932 года «К теории звезд», которая появилась в печати в том самом месяце, когда Джеймс Чедвик открыл нейтрон. Наверное, слишком смело было бы сказать, что Ландау предсказал существование нейтронных звезд, но он определенно что-то подобное предчувствовал, и с большой дальновидностью. Вероятно, приоритет следует признать за Вальтером Бааде и Фрицем Цвикки, которые в 1933 году написали: «Мы имеем все основания предполагать, что сверхновые представляют собой переход от обычных звезд к нейтронным звездам, которые на конечных этапах существования состоят из чрезвычайно плотно упакованных нейтронов».
Эта идея показалась настолько нелепой, что была спародирована в Los Angeles Times (см. рис. 12.1), и нейтронные звезды до середины 1960-х годов оставались теоретическим курьезом.
В 1965 году Энтони Хьюиш и Сэмюэл Окойе нашли «свидетельства необычного источника яркости радиоизлучения высокой температуры в Крабовидной туманности», хотя и не смогли опознать в этом источнике нейтронную звезду. Опознание случилось в 1967 году благодаря Иосифу Шкловскому, а вскоре, после более подробных исследований, и благодаря Джоселин Белл и тому же Хьюишу.
Первый пример одного из самых экзотических объектов во Вселенной получил название пульсара Хьюиша-Окойе. Интересно, что та же сверхновая, что породила пульсар Хьюиша-Окойе, была замечена астрономами за 1000 лет до этого. Великая сверхновая 1054 года, самая яркая в зафиксированной истории, наблюдалась китайскими астрономами и, как известно благодаря знаменитому наскальному рисунку, жителями каньона Чако на юго-западе современных США.
Мы пока еще не говорили о том, как этим нейтронам удается сопротивляться гравитации и препятствовать дальнейшему коллапсу, но, возможно, вы и сами в состоянии предположить, почему это происходит. Нейтроны (как и электроны) — рабы принципа Паули. Они тоже могут останавливать коллапс, и нейтронные звезды, как и белые карлики, — один из вариантов окончания жизни звезды. Нейтронные звезды, вообще-то, отступление от нашего повествования, но мы не можем не отметить, что это совершенно особенные объекты в нашей великолепной Вселенной: это звезды размером с город, настолько плотные, что чайная ложка их вещества весит как земная гора, а не распадаются они только благодаря естественной «неприязни» частиц одного спина друг к другу.
Для самых массивных звезд во Вселенной остается только одна возможность. В этих звездах даже нейтроны движутся со скоростью, близкой к скорости света. Такие звезды ждет катастрофа, потому что нейтроны не способны создавать достаточное давление, чтобы противостоять гравитации. Пока неизвестен физический механизм, не дающий ядру звезды, масса которой примерно в три раза больше массы Солнца, упасть самому на себя, и результатом становится черная дыра: место, в котором все известные нам законы физики отменяются. Предполагается, что законы природы все же продолжают действовать, но для полного понимания внутренней работы черной дыры требуется квантовая теория гравитации, которой пока не существует.
Однако пора вернуться к сути дела и сосредоточиться на нашей двоякой цели — доказательстве существования белых карликов и расчете предела Чандрасекара. Мы знаем, как поступать: необходимо уравновесить гравитацию и давление электронов. Такие вычисления нельзя сделать в уме, так что стоит наметить план действий. Итак, вот план; он довольно длинный, потому что мы хотим сначала разъяснить некоторые второстепенные детали и подготовить почву для собственно вычислений.
Шаг 1: мы должны определить, каково давление внутри звезды, оказываемое сильно сжатыми электронами. Возможно, вас заинтересует, почему мы не обращаем внимания на другие частицы внутри звезды: что насчет ядер и фотонов? Фотоны не подчиняются принципу Паули, так что со временем они все равно покинут звезду. В борьбе с гравитацией они не помощники. Что же до ядер, то ядра с полуцелым спином подчиняются принципу Паули, но (как мы увидим) из-за того, что их масса больше, они оказывают меньшее давление, чем электроны, и их вклад в борьбу с гравитацией можно спокойно игнорировать. Это существенно упрощает задачу: все, что нам нужно, — давление электронов. На том и успокоимся.
Шаг 2: вычислив давление электронов, мы должны заняться вопросами равновесия. Может быть непонятно, что делать дальше. Одно дело сказать, что «гравитация давит, а электроны противостоят этому давлению», совсем другое — оперировать при этом числами. Давление внутри звезды будет варьироваться: в центре оно будет больше, а на поверхности меньше. Наличие перепадов давления очень важно. Представьте себе куб из звездной материи, который находится где-то внутри звезды, как показано на рис. 12.2.
Гравитация направит куб к центру звезды, и мы должны понять, как будет противостоять этому давление электронов. Давление электронов в газе оказывает воздействие на каждую из шести граней куба, и это воздействие будет равно давлению на грань, помноженному на площадь этой грани. Это утверждение точно. До того мы использовали слово «давление», предполагая, что обладаем достаточным интуитивным пониманием того, будто газ при высоком давлении «давит» больше, чем при низком. Собственно, это известно любому, кто хоть раз накачивал насосом сдувшуюся автомобильную шину.
Поскольку нам нужно должным образом понять природу давления, сделаем краткую вылазку на более знакомую территорию. Обратимся к примеру с шиной. Физик сказал бы, что шина сдулась, потому что внутреннего воздушного давления недостаточно, чтобы удерживать вес автомобиля без деформации шины — за это-то нас, физиков, и ценят. Мы можем не ограничиться этим и вычислить, каково должно быть давление в шинах для автомобиля с массой 1500 кг, если 5 см шины должно постоянно поддерживать контакт с поверхностью, как показано на рис. 12.3: опять настало время доски, мела и тряпки.
Если ширина шины — 20 см, а длина соприкасающейся с дорогой поверхности — 5 см, то площадь поверхности шины, находящейся в непосредственном контакте с землей, будет равна 20 × 5 = 100 см3. Требуемого давления в шине мы еще не знаем — его-то и надо вычислить, так что обозначим его символом Р. Нам потребуется также знать действующую на дорогу силу, которую прикладывает воздух в шине. Она равна давлению, помноженному на площадь шины, контактирующую с дорогой, то есть P × 100 см2. Мы должны умножить это еще на 4, поскольку у автомобиля, как известно, четыре шины: P × 400 см2.
Такова общая сила воздуха в шинах, действующая на поверхность дороги. Представьте ее так: молекулы воздуха внутри шины молотят по земле (если быть совсем уж точными, то молотят они по резине шины, которая контактирует с землей, но это не так важно).
Земля обычно при этом не проваливается, то есть реагирует с равной, но противоположной силой (ура, наконец-то нам пригодился третий закон Ньютона). Машину приподнимает земля и опускает гравитация, и, поскольку при этом она не проваливается в землю и не воспаряет в воздух, мы понимаем, что эти две силы должны уравновешивать друг друга. Таким образом, можно считать, что сила P × 400 см2 уравновешивается прижимной силой гравитации. Эта сила равна весу автомобиля, и мы знаем, как вычислить его с помощью второго закона Ньютона F = ma, где a — ускорение свободного падения на поверхности Земли, которое равно 9,81 м/с2. Итак, вес составляет 1500 кг × 9,8 м/с2 = 14700 Н (ньютонов: 1 ньютон — это примерно 1 кг·м/с2, что приблизительно равно весу яблока). Так как две силы равны, то P × 400 см2 = 14700 Н.
Решить это уравнение легко: P = (14700/400) Н/см2 = 36,75 Н/см2. Давление в 36,75 H на см2 — возможно, не вполне знакомый нам способ выражения давления в шинах, но его можно легко преобразовать в более привычные «бары».
Один бар — это стандартное давление воздуха, которое равно 101000 Н на м2. В 1 м2 10000 см2, так что 101000 Н на м2 — это 10,1 Н на см2. Таким образом, наше желаемое давление в шинах равняется 36,75 / 10,1 = 3,6 бар (или 52 фунта на квадратный дюйм — это вы можете вычислить самостоятельно). С помощью нашего уравнения можно также понять, что если давление в шинах падает на 50% до 1,8 бар, то мы удваиваем площадь шины, находящуюся в контакте с поверхностью дороги, то есть шина немного сдувается. После этого освежающего экскурса в вычисление давления мы готовы вернуться к кубику звездной материи, который показан на рис. 12.2.
Если нижняя грань куба ближе к центру звезды, то давление на нее должно быть немного больше, чем давление на верхнюю грань. Такая разность давлений порождает действующую на куб силу, которая стремится оттолкнуть его от центра звезды («вверх» на рисунке), чего мы и хотим добиться, потому что куб в то же самое время гравитацией подталкивается к центру звезды («вниз» на рисунке). Если бы мы могли понять, как сочетать две эти силы, то улучшили бы свои представления о звезде.