Ученые Самарского национального исследовательского университета имени академика С.П.Королёва создали интеллектуальный комплекс, способный предсказывать технические сбои, неполадки и отказы в работе сложных технических систем.
По замыслу разработчиков, в перспективе подобные решения могут использоваться для повышения безопасности авиационных перевозок, но уже сейчас полученные характеристики позволяют применять их в промышленности, в беспилотных летательных аппаратах и автомобилях. Ими создан прототип устройства для диагностики технологического оборудования на производстве, который способен повысить надежность и безопасность действующих технологических линий, уменьшить вероятность простоев на промышленных предприятиях, предотвращая внезапные отказы оборудования.
«Мы разработали концепцию комплекса предсказательной диагностики технологического оборудования и эта концепция реализована нами на практике - созданы прототип комплекса и его аппаратные модули, сформирована база данных по типовым отказам и неполадкам, - рассказал начальник научно-исследовательской части Самарского университета, доцент кафедры эксплуатации авиационной техники Альберт Гареев. - Самое главное здесь - новый принцип: в нашей разработке задействован нейросетевой базис, то есть, используется технология глубокого машинного обучения. В результате создан, по сути, уникальный программный продукт, который в процессе работы самообучается и, диагностируя состояние техники, сообщает человеку, какой элемент той или иной системы находится в предотказном состоянии и может вскоре выйти из строя».
По словам Гареева, уникальность изобретенного учеными метода диагностики заключается в программном сопоставлении так называемых «динамических портретов» узлов и систем: реальное, актуальное состояние оборудования, данные о котором собираются с помощью набора датчиков, в процессе работы постоянно сравнивается с идеальным состоянием техники - «идеальным портретом», закрепленным в базе данных программы. Комплекс выявляет отклонения от этого «идеального портрета» - например, это могут быть изменения в показателях давления в маслосистеме, разница в уровнях температуры или расходе топлива, причем показатели фиксируются на каждом участке узла или системы, после чего нейросетевая программа на основе выработанных в ходе машинного обучения алгоритмов принимает решение о вероятности возникновения неполадки.
Ученым удалось сделать комплекс предсказательной диагностики достаточно компактным, дешевым и энергоэффективным - аппаратная платформа комплекса (без датчиков) выполнена на базе мобильного нейропроцессора с энергопотреблением 5-10 Вт и стоимостью порядка 9 тысяч рублей. Плата с процессором сравнима по размерам с обычным смартфоном. Такие характеристики позволяют применять устройство даже в воздухе, например, на беспилотных летательных аппаратах. Может пригодиться комплекс и человекоподобным роботам.
«Что дает нам эта разработка: мы можем для любого технологического комплекса сделать свою индивидуальную диагностическую систему и это позволит снизить финансовые потери от возможного простоя оборудования. То есть, когда вы знаете, что на конвейере такой-то насос находится в предотказном состоянии, то вы сможете подключить резервную линию, не останавливая производство, а этот насос оперативно заменить или отремонтировать, причем у вас уже будет конкретная рекомендация от нашей системы, что надо снять вот такой-то агрегат и открутить такой-то золотник, - сказал Гареев. - На практике наша система в первую очередь, конечно же, ориентирована на использование на предприятиях, прежде всего в автомобильной и авиационной промышленности, на конвейерах, в многокоординатных станках, антропоморфных разработках, роботах. Но комплекс также можно использовать в авиационной технике — например, на беспилотных летательных аппаратах и самолетах».
В настоящее время ведутся переговоры с рядом предприятий по возможности внедрения данной разработки.
Иллюстрация: nicoelnino / ru.123rf.com