Сибирское отделение РАН

0 комментариев 810

Физики СО РАН разработали материал для генерации лазерного излучения, проникающего сквозь различные вещества

Физики СО РАН разработали материал для генерации лазерного излучения, проникающего сквозь различные вещества
Международная группа ученых обнаружила, что полупроводниковые структуры на основе твердых растворов кадмий-ртуть-теллур, способны генерировать лазерное излучение в терагерцовом диапазоне. 

Международная группа ученых обнаружила, что полупроводниковые структуры на основе твердых растворов кадмий-ртуть-теллур, способны генерировать лазерное излучение в терагерцовом диапазоне. Более того, используя слабое магнитное поле, можно менять длину волны лазера (что важно для технологических применений). Ранее попытки сделать подобные источники когерентного излучения терпели неудачу. В успешном эксперименте приняли участие исследователи Института физики полупроводников им. А. В. Ржанова СО РАН, синтезировавшие материал требуемого состава. Подробности опубликованы в журнале Nature Photonics.

Терагерцовое излучение проникает сквозь различные вещества, не нарушая их структуру, и поэтому может использоваться в диагностической медицине, системах безопасности, научных целях, для неразрушающего контроля качества материалов.  Чтобы реализовать эти применения, нужны переносные источники излучения небольшого размера, перспективные материалы для их разработки — полупроводниковые структуры. Для создания с помощью последних лазерного луча, генерируется избыточное  количество электронов в возбужденном (высокоэнергетическом) состоянии. Обратный переход электронов из возбужденного состояния в обычное сопровождается либо испусканием фотонов, либо безызлучательным процессом — преимущественно Оже-рекомбинацией. Если ее скорость существенно меньше скорости испускания фотонов, тогда возникает когерентное (лазерное) излучение.

Довольно давно теоретиками была предложена концепция лазера на уровнях Ландау: в таком приборе можно управлять длиной волны, изменяя магнитное поле и добиться излучения в терагерцовом диапазоне. Но до сих пор надежное устройство подобной конструкции не было реализовано, именно из-за эффекта Оже-рекомбинации.

«Мы вырастили полупроводниковую наноструктуру на основе твердого  раствора кадмий-ртуть-теллур с составом, в котором наблюдается безщелевой энергетический спектр — то есть ширина запрещенной зоны полупроводника равна нулю. Большая группа наших коллег из совместной международной лаборатории (Laboratory of Terahertz and Mid-Infrared collective Phenomena in Semiconductor Nanostructures, TERAMIR), включая ученых из Франции, Германии и Польши провела исследования новых структур и экспериментально пронаблюдала подавление Оже-рекомбинации до трех порядков, что открывает перспективы для создания терагерцовых лазерных структур. Вырастить требуемый полупроводниковый материал непросто: в каждой его точке должен соблюдаться определенный состав с нужными концентрациями кадмия, теллура и ртути, и флуктуации состава должны быть минимальны. Невозможно избежать их полностью, но они тем меньше, чем ниже температура роста. Мы использовали метод молекулярно-лучевой эпитаксии, он позволяет выбрать минимальные ростовые температуры по сравнению с другими способами и вырастить кристаллические пленки нанометровой толщины заданного состава. Причем последний можно контролировать на атомарном уровне», — пояснил старший научный сотрудник лаборатории молекулярно-лучевой эпитаксии соединений A2B6 ИФП СО РАН кандидат физико-математических наук Николай  Николаевич Михайлов.

Название изображения

Полупроводниковая гетероструктура, выращенная на основе твердого раствора кадмий-ртуть-теллур

В ИФП СО РАН ведутся многолетние исследования по разработке структур на основе теллурида кадмия и ртути, которые преимущественно используются в фотоприемниках инфракрасного излучения. У этого полупроводникового материала изменяется ширина запрещенной зоны в зависимости от соотношения кадмия и ртути в твердом растворе. Запрещенная зона — энергия, нужная электрону для перехода из валентной зоны в зону проводимости. Проще говоря, когда электроны преодолевают запрещенную зону, полупроводник начинает проводить ток.

«Твердый раствор теллурида кадмия и ртути при малом содержании последней переходит в инвертированное состояние, где зона проводимости и валентная зона как бы меняются местами. Существует критическая точка по составу, в которой ширина запрещенной зоны равна нулю, и энергетический спектр становится подобным графену», — отметил Николай Михайлов.

В этом случае при приложении к такой структуре магнитного поля происходит нехарактерное для обычного полупроводника неэквидистантное распределение уровней Ландау — уровней энергий свободных электронов в магнитном поле. Неэквидистантность означает то, что энергетическое расстояние между соседними уровнями неодинаково.  Как следствие, Оже- рекомбинация становится практически невозможна, а электроны, переходя с высокоэнергетического состояния в низкоэнергетическое («спускаясь по лестнице уровней энергии») испускают фотоны — возникает лазерное излучение.

Проведенные исследования показали, что материал на основе твердых растворов теллурида кадмия и ртути с составом, соответствующим безщелевому энергетическому спектру перспективен для создания компактного лазера для терагерцовых и инфракрасных областей спектра с перестраиваемой малыми магнитными полями длиной волны излучения.

Однако пока ключевое препятствие для широкомасштабного использования такого устройства — необходимость соблюдения рабочей температуры, близкой к абсолютному нулю.

Пресс-служба ИФП СО РАН

На фото в заставке: установка молекулярно-лучевой эпитаксии в Институте физики полупроводников им. А.В. Ржанова СО РАН, на которой выращены полупроводниковые структуры кадмий-ртуть-теллур.

[Фото: Виктор Яковлев]

институт физики полупроводников со ран лазерное излучение полупроводники ран со ран терагерцовое излучение

Назад

Социальные сети

Комментарии

Авторизуйтесь, чтобы оставить комментарий

Информация предоставлена Информационным агентством "Научная Россия". Свидетельство о регистрации СМИ: ИА № ФС77-62580, выдано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций 31 июля 2015 года.