Один из наиболее «щадящих» способов лечения рака — фотодинамическая терапия — позволяет уничтожать опухоль за счет перевода молекул кислорода в активную разрушительную для клеток форму при помощи света и специальной молекулы-активатора. Однако в особо агрессивных новообразованиях могут возникать бескислородные условия, где такой подход будет неэффективен. Ученые придумали особую эмульсию, которая одновременно служит источником и молекулярного кислорода, и активирующего его вещества. В результате она позволяет применять фотодинамическую терапию для борьбы со сложными опухолями на поздних стадиях. С работой, поддержанной грантом Российского научного фонда (РНФ), можно ознакомиться на страницах International Journal of Molecular Sciences.
В опухолях, особенно на поздних стадиях, возникают уникальные условия, которые не только способствуют прогрессированию новообразования, но и позволяют ему противостоять традиционной терапии. Так, например, из-за активного деления в опухоли появляются гипоксические зоны, в которых практически нет кислорода. В результате раковые клетки начинают активно мутировать, чтобы приспособиться к гипоксии: часть из них перестраивают свой метаболизм на бескислородный режим, становясь устойчивыми к различным широко применяемым в онкологии воздействиям (в том числе и химиотерапевтическим препаратам), другие клетки испускают особые «SOS-сигналы», которые заставляют сосуды активнее прорастать в опухоль и снабжать ее всем необходимым, что приводит к дальнейшему росту опухоли.
В то же время из-за нехватки кислорода иммунные клетки, которые в больших количествах приходят в опухоль, теряют свою активность — в частности, они не могут преобразовывать кислород в активные формы, а ведь именно это служит одним из способов борьбы с раком. С этой же проблемой столкнется и врач, если попробует назначить фотодинамическую терапию такой опухоли — она просто не сработает. Суть этого лечения заключается в том, чтобы ввести в новообразование вещество-фотосенсибилизатор, при облучении преобразующее молекулярный кислород в активные формы кислорода, повреждающие опухоль.
Сотрудники Института элементоорганических соединений имени А.Н. Несмеянова РАН и Института биохимической физики имени Н.М. Эмануэля РАН (Москва) заставили фотодинамическую терапию работать даже в таких условиях, когда она по определению не может быть эффективной. Для этого они предложили принести кислород в опухоль в составе специальной эмульсии — гидрофобных нанокапель в воде, которые создали путем ультразвуковой обработки изначально несмешиваемой смеси. Капли были сформированы гидрофобными перфторуглеродами, которые по сравнению с водой могут растворять до 20-40 раз больше кислорода, а еще в 7000 раз дольше сохраняют его активную форму в рабочем состоянии. Они инертны, то есть не будут реагировать с окружением и превращаться в опасные для организма вещества. А для того, чтобы убить раковые клетки, авторы синтезировали новые фотосенсибилизаторы — фторсодержащие производные хлорина. Они представляют собой жесткий циклический остов из атомов углерода и азота; остов хорошо поглощает свет в красной области, в которой ткани организма оптически прозрачны, а значит, можно будет лечить даже довольно глубокие опухоли. Чтобы фотосенсибилизаторы можно было растворить в гидрофобных жидкостях, на хлорин навесили дополнительные фторсодержащие циклы — они образуют гидрофобную «шубу», которая также помогала веществу проникать сквозь мембраны клеток и разрушать их изнутри. Эксперименты показали, что эмульсия оставалась стабильной при 4°C и -20°C — то есть при хранении в обычном холодильнике и морозильнике соответственно — в течение не менее 30 дней, а значит, в перспективе в больницах не придется каждый раз готовить новый раствор для пациента.
Разработку исследователи проверили на клетках модельной линии карциномы толстой кишки человека, которая анатомически позволяет провести фотодинамическую терапию, но для которой на поздних стадиях характерна гипоксия. Они вырастили культуру опухолевых клеток в бескислородных условиях и добавили эмульсию в питательную среду. В темноте никакого неконтролируемого эффекта не наблюдалось, однако освещение красным лазером быстро запускало гибель клеток: происходили генерация активных форм кислорода и перекисное повреждение мембран и митохондрий (клеточных энергостанций). Массированная «бомбардировка» клеток продуктами запущенных фотохимических реакций не позволяет опухоли восстановиться, и она буквально лопается изнутри (это называется фотонекроз).
«Наш подход позволит как значительно улучшить эффективность фотодинамического лечения рака, так и расширить его применимость на случаи гипоксических злокачественных опухолей, которые агрессивны и часто не поддаются общепринятым методам терапии. Мы подробно охарактеризовали технологию получения терапевтической эмульсии и описали шаг за шагом механизм ее действия на опухолевых клетках. Наши результаты позволяют нам перейти к исследованиям на мышах, развивая идею фотодинамической терапии в гипоксии, а также исследовать применимость этой эмульсии для других кислородозависимых методов противоопухолевой терапии. Мы нашли условия, при которых эмульсия приносит кислород в гипоксические клетки и позволяет его “активировать” — это важно и для развития подходов и химиотерапии, и лучевой терапии в сложных случаях, когда кислород нужен при лечении, а его в тканях нет», — рассказывает руководитель проекта, поддержанного грантом РНФ, Алина Маркова, кандидат биологических наук, старший научный сотрудник лаборатории физиологически активных фторорганических соединений отдела элементоорганических соединений ИНЭОС РАН.
В работе также приняли участие исследователи из Института биохимической физики имени Н.М. Эмануэля РАН (Москва), Российского национального исследовательского медицинского университета имени Н.И. Пирогова (Москва), Национального медицинского исследовательского центра онкологии имени Н.Н. Блохина (Москва), МИРЭА — Российского технологического университета (Москва) и Московского инженерно-физического института (Москва).
Информация и фото предоставлены пресс-службой Российского научного фонда
Источник фото: ЦКП «Новые материалы и технологии» ИБХФ РАН
Новость подготовлена при поддержке Министерства науки и высшего образования РФ и Российской академии наук