Новый метод ученых ЮФУ и Института биологии и физиологии растений и микроорганизмов РАН (Саратов) позволяет тонко контролировать и подстраивать состояние метаповерхностей, программируемых при помощи света и тока. Это открывает широкие возможности их использования в устройствах фотоники, сенсорике, а также в параллельных оптических вычислениях.
В ближайшие 5–7 лет ожидается рост интереса к «метаповерхностям» – новым оптическим элементам, которые позволяют получать уникальные распределения амплитуд и фаз внутри световой волны. Они будут использоваться в устройствах фотоники, сенсорике и параллельных оптических вычислениях. Это улучшит технологии оптической передачи, обработки информации и методы диагностики. Развитие таких приборов начнется в ближайшее время и может привести к «буму» на мировом рынке.
По словам специалистов Южного федерального университета, новые плоские оптические устройства, которые сейчас разрабатываются в лабораториях, пока стационарны и не могут быть изменены после изготовления. Но уже в недалеком будущем планируется создание устройств на основе динамически переключаемых или плавно настраиваемых материалов.
Диоксид ванадия (VO2) – сейчас наиболее перспективный материал для метаповерхностей, который можно переключать из диэлектрического в металлическое состояние различными способами: при помощи изменения температуры, нагрева током, светом, электрическим полем и даже механическими напряжениями. При этом, если тепловое и токовое переключение отвечает современным научным стандартам, то использование изменяемых световых картинок или голограмм для переключения – это совершенно новый подход, который в настоящее время активно развивают ученые ЮФУ.
Недавно исследователи учебно-научной лаборатории наноматериалов Института математики, механики и компьютерных наук им. И.И. Воровича ЮФУ разработали метод точного мониторинга малых изменений температуры (на уровне 0.2-0.1°С) в композитных материалах для оптически управляемых метаповерхностей на основе диоксида ванадия и плазмонных наночастиц. Наночастицы, или же нанонозвезды, были изготовлены доктором физико-математических наук, сотрудником Института биологии и физиологии растений и микроорганизмов РАН (Саратов) Борисом Хлебцовым. Кроме того, в материалах обнаружены уникальные свойства памяти, которые открывают широкие возможности их использования в устройствах реконфигурируемой инфракрасной и ТГц фотонике, сенсорике, параллельных оптических вычислениях. Этот подход позволяет отслеживать различные физические, химические и биологические явления на поверхностях с выделением тепла. Основное преимущество метода – универсальность. Результаты работы опубликованы в журнале Materials.
«Если ты можешь контролировать локальную температуру чувствительной к теплу функциональной структуры из VO2 — значит можешь гибко управлять ее свойствами. В классическом VO2, к большому сожалению, если фазовый переход однажды начался, то он “лавинообразно” будет происходить до металлического состояния. Стабилизировать рабочую точку посередине перехода ранее ни у кого не получалось. Однако сама возможность такой стабилизации открывает новые возможности в развитии устройств плоской оптики. Действительно, если есть возможность управляемо зафиксировать состояние VO2 одного “пикселя” метаповерхности в некотором состоянии “A” между проводимостью диэлектрика и металла, а других “пикселей” - в других состояниях “В”, “С” — значит можно менять “оптические” свойства внутри фронта плавно или “градиентно”, а не дискретно, как “0” и “1”. Это имеет колоссальное значение для “градиентной” оптики, которая, как известно, позволяет достигать самые высокие характеристики приборов. Нам удалось получить именно такой материал, у которого свойства можно плавно “подкрутить” в любое состояние между диэлектриком и металлом, а потом зафиксировать его там на некоторое время. И сделать это можно при помощи нагрева, пропускания тока и даже при помощи облучения светом. Мы пытаемся осуществить адресацию к элементам метаповерхностей из диоксида ванадия при помощи света. Но поскольку диоксид ванадия поглощает свет сравнительно плохо, ему необходимо “помогать”. В данном случае частицы золота прекрасно нагреваются светом и могут отдавать рассеянное тепло пленке VO2, таким образом, они повышают управляемость переключения при помощи световых сигналов. Для создания композитных материалов были задействованы массивы плазмонных наночастиц (нанозвезд), изготовленных в Институте биологии и физиологии растений и микроорганизмов РАН в Саратове Борисом Хлебцовым», – отметил ведущий научный сотрудник лаборатории наноматериалов ЮФУ Владимир Кайдашев.
Сегодня способ оптической адресации метаповерхностей все еще является глобальным вызовом в научном сообществе, однако ученые ЮФУ активно продвигают и развивают эту парадигму. Уже сейчас становится очевидно, что метод электрического управления чипами имеет серьёзные ограничения и переход к оптическому управлению неизбежен, как и в случае перехода от аналоговой электроники к цифровой.
По словам Владимира Кайдашева, сейчас группа ученых лаборатории наноматериалов ЮФУ разрабатывает инфракрасные и терагерцовые метаповерхности, в том числе металинзы, способные динамически изменять свое фокусное расстояние.
Информация и фото предоставлены пресс-службой ЮФУ
Источник фото: ЮФУ