Ученые подтвердили, что поведение проводящего флюида водорода при высоких давлениях подобно плазме. Понимание поведения водорода в критических условиях необходимо для исследований в области термоядерного синтеза, сверхпроводимости и получения представлений об устройстве планет-гигантов. Работа опубликована в журнале The Journal of Chemical Physics.
Физики поставили перед собой задачу определить природу фазового перехода флюида водорода из молекулярной фазы в проводящую (металлическую). В 2020 году из теоретико-вычислительных работ стало известно, что при высоком давлении у водорода наблюдается аномальный рост диффузии. Однако из экспериментальных данных не получается определить коэффициенты диффузии и вязкости. А прямые ab initio расчеты затратны по вычислительным ресурсам и времени. Поэтому исследователи решили применить комбинацию методов машинного обучения и классической молекулярной динамики. Такой подход позволил получить точность ab initio расчетов и изучить динамические свойства флюида водорода в больших моделях.
«Для построения межатомного потенциала мы собрали данные ab initio расчетов: энергии и силы для разных конфигураций систем при различных температурах и плотностях. Наш соавтор Николай Щелкачев (ИФВД РАН) в режиме активного обучения отобрал конфигурации с наибольшей ошибкой предсказания и к ним провел дополнительные расчеты для улучшения точности модели. На выходе у нас получился DeepMD-потенциал — функция энергии системы от координат всех атомов. Он воспроизводит результаты ab initio расчетов, но значительно быстрее», — объяснил Вячеслав Лукьянчук, младший научный сотрудник Центра вычислительной физики, ассистент кафедры вычислительной физики МФТИ.
Разработанный потенциал сохраняет точность квантовых расчетов и на порядки ускоряет вычисления для большого числа частиц. Также он предоставляет данные о колебательных спектрах, коэффициентах диффузии и вязкостях в диапазонах температур и плотностей. С его помощью ученые впервые рассчитали вязкость плотного разогретого флюида водорода, что ранее было недоступно из-за больших затрат вычислительных ресурсов. Оказалось, что она значительно увеличивается при фазовом переходе, а затем снижается с дальнейшим ростом плотности. Это все соответствует тенденциям, наблюдаемым в щелочных металлах, таких как литий.
«По данным наших расчетов оказалось, что при фазовом переходе вязкость флюида водорода значительно увеличивается, а затем спадает с дальнейшим ростом плотности», — рассказал Гинтарас Гляудялис, студент 4 курса ЛФИ МФТИ.
«Мы разрабатываем идею о том, что вязкость флюида водорода при высоких давлениях может вести себя так же, как и у щелочных расплавов. Это будет проверено в наших будущих исследованиях», — рассказал Николай Кондратюк, исполнительный директор Центра вычислительной физики МФТИ.
Расчет подтверждает существование фазового перехода первого рода в жидком водороде, сопровождающегося резким изменением плотности, диффузии и вязкости. Результаты показывают значительное увеличение коэффициента диффузии при температурах 700, 800 и 900 К и соответствующих им плотностей фазового перехода. Такие изменения связаны с увеличением подвижности атомов, вызванным диссоциацией молекул водорода. Полученная картина сравнивалась с исследованиями теории функционала плотности и экспериментальными данными. Они демонстрируют согласованность, подтверждая эффективность разработанного потенциала для моделирования флюида водорода.
«Используемый подход универсален и подходит для широкого круга задач, где прямые квантовые расчеты слишком громоздки. Однако потенциал необходимо "обучать" под конкретную задачу, собрав статистику ab initio расчетов», — комментирует Ильнур Саитов, сотрудник Университета Л’Акуилы.
«Мы планируем дальнейшее совершенствование модели, а именно: учет квантовых ядерных эффектов, добавление большей статистики в обучающую выборку, расчет для изотопов водорода и применение аналогичного подхода к другим водородсодержащим системам», — подытоживает Николай Кондратюк.
В работе участвовали ученые из МФТИ, Объединенного института высоких температур РАН, Института физики высоких давлений РАН, Университета Л’Акуилы (Италия), НИУ ВШЭ.
Информация и фото предоставлены Центром научной коммуникации МФТИ