Учёные факультета ВМК МГУ разработали универсальную компьютерную технологию, позволяющую исследовать влияния квантовых эффектов на оптические характеристики наноразмерных структур, расположенных в активной среде на поверхности прозрачной подложки. Эта технология успешно использовалась при оптимизации характеристик 3D-резонаторов плазмонного нанолазера - SPASER (Surface Plasmon Amplification by Stimulated Emission of Radiation). В будущем исследование приблизит создание нового класса миниатюрных устройств, а также гибкой электроники. Работа опубликована в высокорейтинговом международном журнале  Journal of Quantitative Spectroscopy and Radiative Transfer.

Создание наноразмерных источников монохроматического излучения может осуществить революцию в большинстве современных технологий. Идея состоит в том, чтобы использовать плазмонные поля вместо фотонных, используемых в обычных оптических лазерах. Наноплазмонные устройства позволяют получать сверхвысокую концентрацию электромагнитного поля в областях, размеры которых на порядки превышают рэлеевский предел оптического оборудования. Совершенствование схем плазмонного нанолазера (ПН) является одной из фундаментальных задач квантовой наноплазмоники. Вместе с тем непрерывная миниатюризация плазмонных элементов приводит к тому, что классической системы уравнений Максвелла оказывается недостаточно для описания функционирования схем наноплазмонных устройств, так как возникают квантовые эффекты, которые существенно меняют оптические характеристики устройства.

В основе реализованной компьютерной технологии лежит метод дискретных источников (МДИ), разработанный в МГУ заслуженным научным сотрудником факультета вычислительной математики и кибернетики (ВМК) Юрием Ереминым. В последние 25 лет МДИ широко применяется для моделирования в оптике. В частности, в задачах метрологии кремниевых подложек, используемых при создании чипов процессоров, а также применительно к калибровке микроскопа полного внутреннего отражения (Total Internal Reflection Microscope). В самые последние годы МДИ был обобщен на случай присутствия квантового эффекта нелокальности в наноплазмонных устройствах. Его отличие от других методов заключается в способности вычислять плазмонные поля вблизи структур с гарантированной точностью.

«В данной работе проведена оптимизация структуры 3D-резонатора плазмонного лазера, представляющего собой слоистую наночастицу с плазмонным металлом, расположенную в активной среде на поверхности прозрачной призмы. Установлено, что коэффициент усиления (КУ) интенсивности поля вблизи резонатора растет с уменьшением толщины золотого покрытия и увеличением наклона распространения внешнего возбуждения по отношению нормали к поверхности призмы. Показано, что возбуждение подобного резонатора неизлучающей волной, распространяющейся из-под поверхности призмы, обеспечивает существенный рост КУ поля. В результате моделирования удалось добиться увеличения КУ резонатора плазмонного лазера (ПН) в 400 раз по сравнению со схемой, использованной Ногиновым М.А. с соавторами в эксперименте (Noginov M.A. et al. Nature. 2009. V.460. P.1110). При этом выяснилось, что учет эффекта нелокальности в плазмонном металле резонатора приводит к существенному снижению величины КУ резонатора, которое может достигать величины 60%», - добавил Юрий Еремин.

Следует отметить, что развитый подход легко обобщается на широкий круг плазмонных элементов, таких как биметаллические частицы, полупроводниковые с плазмонным покрытием и магнитоплазмонные наноструктуры.

Работа выполнена в рамках международного договора о сотрудничестве между факультетом ВМК МГУ и факультетом Механики университета Бремена, Германия.

 

Информация предоставлена пресс-службой МГУ

Источник фото: https://openday.msu.ru/cs-ru