Материалы портала «Научная Россия»

Квантовая механика на пальцах. Часть I

Квантовая механика на пальцах. Часть I
Разбираемся в сути квантовой физики с нуля

Современную физику принято подразделять на две большие ветви — классическую и квантовую. Первая исторически восходит к Галилею и Ньютону, вторая — к Максу Планку и Альберту Эйнштейну. Квантовая идеология первоначально обрела себе место в новой теории электромагнитного излучения, однако без большой задержки распространилась на описание свойств материи на уровне атомов и молекул. В этом качестве она стала основой новой науки, названной квантовой механикой. Попробуем разобраться в ее сути с нуля, без каких-либо предварительных знаний.

Квантовая механика давно вышла за свои первоначальные рамки. Уже к концу первой трети двадцатого века она стала незаменимым инструментом теоретического изучения электрических и магнитных свойств различных материалов. Она нужна для описания атомных ядер и частиц, из которых те состоят, — протонов и нейтронов. Квантовая механика также лежит в основе наших знаний о самых фундаментальных свойствах материи, которая заполняет Вселенную. Без нее невозможно выяснить, откуда взялись химические элементы, почему загораются, светят и умирают звезды, как рождаются космические лучи и что происходит при столкновениях элементарных частиц. В общем, это наука широкого профиля.

Но это не всё. Квантовая механика показала, что в микромире действуют законы, которые сильно противоречат нашему житейскому опыту. Их нелегко осознать, к ним непросто привыкнуть, они удивительны и парадоксальны — и все же справедливы!

НАСЛЕДИЕ НЬЮТОНА

Слово «механика» имеет много смыслов, однако с точки зрения физики это наука о движении, о перемещении в пространстве. Теннисный мяч летит над сеткой, поезд мчится по рельсам, ветры переносят воздушные потоки, Земля вращается вокруг Солнца, а оно в свою очередь каждые двести миллионов лет совершает полный оборот вокруг центра нашей Галактики. Эти движения совершаются под действием различных сил, иногда очень сложных. Однако все они описываются одними и теми же законами, которые в XVII веке открыл великий английский физик и математик Исаак Ньютон. Позднее их не раз переписывали с помощью все новых математических формул, но суть от этого не менялась. И двести с лишним лет физики были уверены, что великое творение Ньютона не знает исключений.

Возьмем простейшее из всех мыслимых тел — крошечный шарик. Если заложить в уравнения механики сведения о том, какова его масса, какие силы на него действуют, где он находится в начальный момент и какую при этом имеет скорость, можно будет вычислить положение (как говорят физики, координаты) и скорость шарика во все последующие моменты. Чтобы описать движение тела сложной формы, надо знать побольше, и на практике такие расчеты могут оказаться очень трудоемкими не только для человека, но и для суперкомпьютера, но это уже дело техники.  

Ньютоновская механика имеет дело только с теми движениями, которые задаются координатами тел и их скоростями. При этом она принимает без доказательств, что все эти величины можно одновременно измерить с любой точностью — во всяком случае, в принципе. Именно это допущение позволяет считать, что тело в любой момент находится в определенном месте в пространстве и при этом имеет определенную скорость. Если от него отказаться, уравнения ньютоновской механики не только потеряют силу, но и станут бессмысленными. Это легко понять — ведь координаты и скорости фигурируют в них на равных правах и в сочетании друг с другом.

МЕРА ЗА МЕРУ

Теперь подумаем, как на практике выполнить такие измерения. Предположим, мы следим за самолетом с помощью радиолокатора. Импульсы радиоволн отражаются от корпуса машины, и прибор выдает на дисплее ее координаты и скорость. При отражении каждый импульс передает самолету часть своей энергии и тем самым чуть-чуть меняет его скорость. Однако кинетическая энергия самолета настолько превышает энергию облучения, что эти изменения никак себя не оказывают и могут считаться нулевыми. Это и дает основания утверждать, что наш прибор одновременно отслеживает и путь, и скорость самолета. То же самое происходит и при любых измерениях движения крупных (как говорят физики, макроскопических тел) посредством радиоволн, света или чего-то еще. Даже просто «на глазок» прикинуть расстояние до соседней машины на шоссе можно только потому, что она отражает свет — иначе мы бы ее просто не увидели. Это же относится и к оценке ее скорости.

Но вот можно ли таким же путем одновременно измерить координаты и скорость микрочастицы — скажем, электрона? Электроны несут электрические заряды и потому рассеивают электромагнитные волны, в том числе и свет. Следовательно, электрон в принципе можно отловить, поймав отраженный от него электромагнитный импульс. Однако его положение в пространстве нам удастся определить только с погрешностью, величина которой примерно равна длине волны излучения, которое мы использовали в нашем локаторе. Для повышения точности эту длину надо уменьшать, переходя от видимого света к ультрафиолету, потом к рентгеновским лучам, потом к гамма-излучению. Чтобы измерить скорость электрона, такую локацию надо выполнить как минимум дважды, причем через короткий промежуток времени.

Теперь мы подошли к главному — к моменту истины. Как уже говорилось, электромагнитный импульс передает часть своей энергии объекту, на котором он рассеивается. После отражения импульса кинетическая энергия электрона изменится, а потому изменится и его скорость. Электрон может ускориться, затормозиться или повернуть, но в любом случае его движение не будет прежним. Этого не произойдет лишь в том случае, если мы все время будем обстреливать электрон только такими импульсами, чья энергия практически равна нулю по сравнению с его собственной. Как только что говорилось, для достижения все большей точности в измерении координат надо раз за разом уменьшать длину волны, на которой работает наш воображаемый локатор (то есть увеличивать частоты). Можно ли это сделать, сохраняя энергию импульсов на сколь угодно малом уровне?

Если бы кому-то пришло в голову задать такой вопрос сразу после открытия электрона в 1897 году, ответ мог бы быть только положительным. Тогда считалось, что энергия электромагнитной волны может быть как угодно малой при любой длины волны. Но уже через три года было доказано, что Природа такой свободы не допускает.

НАКОНЕЦ-ТО КВАНТЫ!

Этим важнейшим открытием наука обязана немецкому физику-теоретику Максу Планку. В то время физиков очень интересовало тепловое излучение нагретых тел (скажем, утюга или раскаленной нити электрической лампочки). На этот счет было выполнено много экспериментов, однако их результаты никак не удавалось свести к одной формуле. В 1900 году Планк показал, что такую формулу можно получить, если предположить, что тепловое излучение испускается и поглощается отдельными пакетами, а вовсе не непрерывно. Энергия каждого пакета равна частоте излучения, умноженной на новую физическую константу, которую назвали постоянной Планка.

Новая теория радикально расходилась с тогдашними представлениями о природе электромагнитных волн (а тепловое излучение — это просто его разновидность). Все волновые процессы считались абсолютно непрерывными. По Планку же получалось, что это свойство относится разве что к уже родившимся волнам, которые распространяются в пространстве. Процессы испускания и поглощения волн, напротив, могут осуществляться только порционно (как говорят физики, дискретно). В общем, если электромагнитное излучение — это море, то черпать из него (или добавлять в него) воду можно только кружками определенной вместимости.

Следующий шаг через пять лет сделал Альберт Эйнштейн в своей теории фотоэффекта. Так называется процесс, в ходе которого свет выбивает электроны с поверхности различных веществ. Это явление в 1887 году открыл Генрих Герц — он же первооткрыватель электромагнитных волн. В начале двадцатого века было установлено, что энергия вылетающих электронов растет вместе с частотой падающего излучения. Чтобы объяснить этот результат, Эйнштейн допустил, что планковские энергетичсеские пакеты сохраняются и при распространении света. Световой поток оказался вовсе не непрерывным, он распадается на отдельные «зерна», которые Эйнштейн назвал световыми квантами (латинское слово «кванта» означает «количество»).  Так в языке физики появился термин, который в будущем дал название новой механике.

Вернемся к мысленному эксперименту с измерением движения электрона. Как говорилось, мы можем уточнять его позицию, обстреливая электрон световыми импульсами все меньшей длины волны. Это означает, что для локации электрона придется использовать кванты все большей частоты, а следовательно, энергии. Встреча с каждым таким квантом будет все сильнее менять его скорость. А для сколько-нибудь точного измерения скорости придется использовать свет очень малых частот, состоящий из квантов почти нулевой энергии. Уменьшение частоты означает рост длины волны, так что позицию электрона мы будем измерять со все большей погрешностью.

К чему же мы пришли? Мы предположили, что электрону в любой момент можно приписать и определенное положение в пространстве, и определенную скорость. Однако наш мысленный эксперимент показал, что квантовая структура света не позволяет одновременно измерить и то, и другое. Это принципиальный запрет, он не зависит от устройства и качества измерительных приборов. Чем точнее мы определяем положение электрона, тем сильнее меняем его скорость, в то время как точное измерение скорости делает невозможным измерение позиции.  Однако физика не имеет дела с воображаемыми вещами, это опытная наука. Поэтому наше первоначальное допущение о наличии у электрона пространственных координат и скорости не имеет физического смысла и должно быть отброшено. Выражаясь иначе электрон не может одновременно иметь и определенную скорость, и определенное положение в пространстве. Выходит, что для описания движения электрона ньютоновская теория не годится. Здесь нужна совсем другая механика, учитывающая квантовую природу света.

Эти рассуждения могли бы придти в голову какому-нибудь физику сразу после появления эйнштейновской теории фотоэффекта. До них мог додуматься сам Эйнштейн, который очень любил мысленные эксперименты и замечательно умел ими пользоваться (именно с их помощью он создал свою теорию относительности). Однако этого не случилось, и рождения новой механики пришлось ждать еще двадцать лет.

Вторая часть выложена здесь.

альберт эйнштейн квантовая механика макс планк

Назад

Социальные сети

Комментарии

Авторизуйтесь, чтобы оставить комментарий