Материалы портала «Научная Россия»

Когда корни растений научились следовать гравитации

Когда корни растений научились следовать гравитации
Ученые Института наук и технологий Австрии определили ключевые эволюционные этапы гравитационно-направленного роста корней, - пишет eurekalert.org.

Ученые Института наук и технологий Австрии определили ключевые эволюционные этапы гравитационно-направленного роста корней, - пишет eurekalert.org.

Одно из самых важных событий в истории эволюции произошло около 500 миллионов лет назад с распространением растительной жизни с воды на землю. Чтобы растения могли процветать в этой новой среде, корневые системы должны были развиваться, чтобы расти вниз, следуя гравитации с двумя основными целями: закрепление в почве и обеспечение источника воды и питательных веществ для роста частей растения над землей. Этот механизм, называемый гравитропизмом, широко изучался на цветковых растениях, таких как Arabidopsis thaliana. Тем не менее, его никогда не сравнивали систематически в растительном мире, и его эволюционное происхождение оставалось загадкой.

Вниз - но с разной скоростью

Теперь Ючжоу Чжан, постдок из группы профессора Цзи, и его команда получили более широкое представление о том, как и когда развился корневой гравитропизм. Исследователи отобрали несколько видов растений, представляющих линии мхов, ликофитов (клубневые и твердые), папоротников, голосеменных (хвойных) и цветковых растений, и позволили их корням расти горизонтально, чтобы наблюдать, когда они начнут наклоняться вниз, следуя гравитации. Результат: гравитационный рост корней оказался очень рудиментарным и медленным у большинства примитивных наземных растений (мхов), а также у базальных сосудистых растений (ликофитов и папоротников). Только семенные растения (голосеменные и цветущие растения), которые впервые появились около 350 миллионов лет назад, показали более быструю и, следовательно, более эффективную форму гравитропизма.

Сила крахмала

Но какой эволюционный шаг позволил этот быстрый и эффективный корневой гравитропизм в семенных растениях? Анализируя различные фазы гравитропизма - восприятие гравитации, передачу гравитропического сигнала и, в конечном счете, саму реакцию роста, исследователи обнаружили два важнейших компонента, которые развивались вместе. Первый оказался анатомической особенностью: органеллы растений, называемые амилопластами, - плотно заполненные гранулами крахмала, - оседают под действием силы тяжести и, таким образом, действуют как датчики силы тяжести. Однако этот процесс седиментации наблюдался только у голосеменных и цветковых растений с амилопластами, которые концентрировались в самом низу кончика корня. В более ранних растениях, напротив, амилопласты оставались случайным образом распределенными внутри и над верхушкой корня, не функционируя в качестве датчиков силы тяжести, как это было в случае семенных растений.

Специальный пин-код для ауксина

После восприятия через амилопласты гравитационный сигнал далее передается от клетки к клетке с помощью гормона роста ауксина. В генетических экспериментах исследователи идентифицировали специфическую транспортную молекулу в модельном растении Arabidopsis thaliana, PIN2, которая направляет поток ауксина и, следовательно, рост корня. В то время как почти все зеленые растения несут белки PIN, только специфическая молекула PIN2 в семенных растениях собирается на боковой стороне корневых эпидермальных клеток. Эта специфическая локализация - уникальная для семян растений - приводит к поляризации клеток-переносчиков, что, в свою очередь, позволяет корню транспортировать ауксин к побегу и, таким образом, передавать сигналы на основе ауксина от места восприятия силы тяжести к зоне регулирования роста.

Растения как учителя для человечества

Выявив эти два анатомических и функциональных компонента, авторы получили ценную информацию об эволюции корневого гравитропизма, который является одной из важнейших адаптаций семенных растений к земле. Возможны также практические последствия этих выводов: «Теперь, когда мы начали понимать, какие растения нуждаются в стабильном корневом укреплении, чтобы достичь питательных веществ и воды в глубоких слоях почвы, мы можем в конечном итоге найти способы улучшить рост культур и других растений в очень засушливых районах, - говорит Чжан. - Природа намного умнее нас; мы можем многому научиться у растений, которые в конечном итоге приносят нам пользу».

[Фото: eurekalert.org]

Источник: eurekalert.org

гравитропизм корневая система растения растения эволюция

Назад

Социальные сети

Комментарии

Авторизуйтесь, чтобы оставить комментарий

Информация предоставлена Информационным агентством "Научная Россия". Свидетельство о регистрации СМИ: ИА № ФС77-62580, выдано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций 31 июля 2015 года.