Материалы портала «Научная Россия»

0 комментариев 2713

Эль-Ниньо: непредсказуемое "дитя" климата. Интервью с проф. РАН Дарьей Гущиной

Профессор кафедры метеорологии и климатологии географического факультета МГУ Дарья Гущина рассказывает о причинах и следствиях климатической аномалии в Тихом океане

Впервые явление Эль-Ниньо открыли перуанские рыбаки. Именно у побережья Перу в канун Рождества Эль-Ниньо достигает своего пика. Само название аномалии говорит за себя —  с испанского оно означает "ребенок, который приходит на Рождество". Уже в дальнейшем ученые смогли определить специфику явления, его причины, а главное, последствия, подчас разрушительные для жителей Тихоокеанского побережья. Профессор Российской академии наук Дарья Гущина рассказывает об особенностях аномалии.

Название изображения

Дарья Юрьевна Гущина — профессор кафедры метеорологии и климатологии географического факультета МГУ, профессор Российской академии наук.

— Расскажите о климатической аномалии Эль-Ниньо, что она собой представляет и какую функцию выполняет?

— Эль-Ниньо — это природный феномен, для которого характерно аномальное повышение температуры поверхностного слоя воды в центральной и восточной зонах экваториальной части Тихого океана. Во время эпизодов Эль-Ниньо нарушается привычный характер атмосферных процессов в тропической зоне, что может вызывать экстремальные климатические явления во всем мире.

Про функцию этой аномалии говорить достаточно сложно. Но между тем, все, что существует на Земле и в ее климатической системе, какую-то функцию имеет. «Если звезды зажигают — значит — это кому-нибудь нужно». Поэтому всё, что существует на Земле представляет собой естественную составляющую и климатической среды, и земной системы в целом.

На современном уровне развития науки и моделирования речь уже идет не только о моделировании отдельной оболочки или среды (атмосферы, гидросферы или литосферы), а о земной системе в целом. Поэтому для воспроизведения современного климата и прогнозирования изменений в будущем необходим учет взаимодействия между всеми компонентами земной системы.

Так вот Эль-Ниньо — полноправный член и климатической, и земной систем. Как вы справедливо заметили, это некоторая климатическая аномалия. Хотя есть и противники такой терминологии, которые считают, что аномалия — это что-то случающееся крайне редко и без какой бы то ни было цикличности. В принципе обе точки зрения принимаются, поскольку Эль-Ниньо — явление повторяющееся, и в некотором смысле можно говорить даже о некотором цикле, пусть он и не имеет строгого одинакового периода.

Замечу, что все, что связано с климатом и погодой, к сожалению, не имеет строгой периодичности, в отличие, например, от астрономии, где все уже давно посчитано, спрогнозировано на тысячи и миллионы лет вперед. В климатической системе велика хаотическая компонента, которая как раз и приводит к тому, что все события реализуются всегда немного по-разному.

Если говорить об Эль-Ниньо, то эта аномалия, как правило, продолжается от 8-9 месяцев до года и более. Известны случаи, когда Эль-Ниньо в тропиках Тихого океана продолжалось на протяжении почти двух лет.

Средний период повторяемости — четыре года, хотя явного спектрального максимума нет. А интервалы могут быть от 2 до 7 лет. Бывало, что и на протяжении десяти лет не наблюдалось ни одного явления Эль-Ниньо.

Если говорить о пространственном масштабе, то изначально термином Эль-Ниньо называли локальный феномен, наблюдающийся у берегов Перу, однако сейчас Эль-Ниньо называют аномалию планетарного масштаба, охватывающую весь тропический Тихий океан и вызывающую отклик во многих районах Земного шара.

Эль-Ниньо, наблюдавшееся в 1997 году спутником TOPEX/Poseidon, в рамках совместной миссии NASA (США) и французского космического агентства CNES 

Эль-Ниньо, наблюдавшееся в 1997 году спутником TOPEX/Poseidon, в рамках совместной миссии NASA (США) и французского космического агентства CNES 

Источник: Wikipedia

Зарождается Эль-Ниньо в тропическом районе Тихого океана. Именно здесь оно оказывает наиболее сильное влияние на погодные и климатические условия, захватывая Австралию, Южную Америку и западное побережье Северной Америки, а также субтропические широты, оказывая влияние и на юго-восточную часть Евразии.

Поскольку речь идет об аномальных условиях, которые возникают на территории десятка тысяч квадратных километров, то возросший поток тепла и влаги из океана в атмосферу распространяется достаточно быстро по всей планете. Поэтому так называемые дальние связи Эль-Ниньо прослеживаются в умеренных, субполярных и даже полярных широтах. Исследование этого отклика проводится и на нашей кафедре.

Однако не стоит впадать крайности. Очень часто люди связывают Эль-Ниньо, например, с грозой в Москве. Конечно, это невозможно, так как пространственный и временной масштаб этих явлений совершенно различен. Более того, однозначных зависимостей процессов в умеренных широтах от Эль-Ниньо нет. Хотя, конечно, аномальные потоки тепла и влаги, которые в атмосфере могут распространяться на далекие расстояния, вызывают отклонения в распределении атмосферного давления. А атмосферное давление связано с перемещением воздуха, проще говоря, ветром.

«Откуда ветер дует?» — извечный вопрос человеческой цивилизации. Даже древние шаманы и мудрецы в попытке прогнозировать погоду ориентировались на ветра и воздушные течения. Они понимали, что именно перемещение воздуха во многом определяет условия погоды. Таким образом аномалии атмосферного давления и связанные с ними аномалии циркуляции атмосферы, вызванные Эль-Ниньо, вызывают изменения погоды и климата и в умеренных широтах.

— Влияет ли Эль-Ниньо на состояние климатической системы в том или ином районе Земли?

— Эль-Ниньо может приводить к изменениям атмосферного давления, из-за чего меняются воздушные потоки. Поэтому удаленное воздействие действительно существует.

Между тем, в умеренных широтах своя кухня погоды. Здесь хаотическая компонента, представленная циклонической деятельностью, то есть постоянной сменой циклонов и антициклонов, во многом модифицирует сигнал Эль-Ниньо, идущий из тропиков.

Эль-Ниньо часто называют течением, а иногда и ураганом, что в корне неверно. Хотя связь есть. Напомню, что Эль-Ниньо — это крупномасштабное потепление всего тропического Тихого океана. В среднем температура поверхности океана увеличивается на полтора-два градуса. Вроде бы не так уж и много. Важно то, что это потепление проявляется на площадях в десятки тысяч квадратных километров. Порой в отдельных районах температура увеличивается сразу на пять градусов выше нормы, и в таком случае последствия бывают очень ощутимы.

— Когда впервые удалось зафиксировать это явление?

— Интересно, что явление обнаружили перуанские рыбаки. Дело в том, что западное побережье Южной Америки, где расположены Перу, Чили, Эквадор, омывают холодные воды Перуанского течения. Из-за циркуляции в атмосфере и в океане по восточной периферии субтропического антициклона ветры дуют все время от более высоких широт в направлении экватора, увлекая за собой и воды. Так образуются течения. На побережье Перу из более высоких широт приходит холодная вода, образуя район с аномально низкой температурой. Если сравнивать с соседними районами тропиков Тихого океана, температура на пять, а то и более градусов ниже. Поэтому в водах Перуанского течения прекрасно себя чувствуют киты, принося доход в экономику Чили и Перу, где организуют всевозможные туры. Но даже не это главное.

Холодные воды богаты планктоном, а планктон — это основная пища для рыбы. Поэтому в этих районах рыболовство — одна из важнейших отраслей экономики. Естественно, когда эта отлаженная система нарушается, то уменьшаются и уловы, экономика падает, а люди страдают. Так вот перуанские рыбаки в канун Рождества заметили потепление вод и снижение улова, назвав природное явление «Ребенком, который приходит на Рождество».  Возможно, это даже их и радовало, поскольку они могли отдохнуть несколько дней в праздники. Однако в дальнейшем стало понятно, что в отдельные годы потепление продолжается не неделю, не две и не месяц, а может продолжаться на протяжении года.

Конечно, перуанские рыбаки в начале XX века не могли оценить пространственные размеры аномалии. Когда же появились данные наблюдений, ученые обнаружили, что последствия Эль-Ниньо наблюдаются не только у берегов Южной Америки, а распространяются на весь Тихий океан.

Поскольку океан и атмосфера очень тесно связаны, а изменение температуры поверхности, как я говорила, определяет изменение атмосферного давления, направления ветровых потоков тоже меняются. В условиях климатической нормы над большей частью тропической зоны Тихого океана господствует «классический» пассатный перенос воздушных масс с устойчивыми восточными ветрами, и только на западе Тихого океана, вблизи Индонезии и Северной Австралии, преобладают экваториальные западные ветры. Дуя с большим постоянством, пассаты нагоняют теплую воду на запад Тихого океана. Ветер воздействует на океаническую поверхность, и происходит отгон воды от побережья Южной Америки и нагон к западной части, к Австралии и Индонезии. Это приводит к очень интересному следствию — теплая вода накапливается на западе Тихого океана, а холодная на востоке.

— Почему?

— Во-первых, на температуру в восточной части влияет упомянутое холодное Перуанское течение, а во-вторых, действует закон сохранения массы. Если вода куда-то оттекает, то что-то должно это компенсировать. В качестве компенсации поднимается вода снизу, которая, конечно, более холодная. Это явление называется апвеллингом.

Так вот в годы Эль-Ниньо за счет потепления поверхности и изменения атмосферного давления пассаты ослабевают, а иногда и вовсе прекращают дуть. Их «заменяют» западные ветры. И дальше работают три механизма, которые способствуют развитию этого потепления. Очень часто задают вопрос, а что первично: потепление в Тихом океане или понижение давления? Но, как я уже говорила, это цикл, нечто повторяющееся, похожее на маятник. Одна аномалия вызывает другую, а целый ряд определенных процессов приводит к затуханию явления. Поэтому некая маятниковая система работает и в Тихом океане.

— Тогда что способствует потеплению?

— Я бы выделила два основных механизма. Напомню, что пассаты ослабевают, а нагон теплой воды на запад уменьшается. По сути, теплая вода начинает распространяться в обратном направлении. Она больше не удерживается пассатами на западе, и происходит горизонтальный перенос теплой воды с запада на восток, где и возникает Эль-Ниньо. Изначально ученые предполагали, что эта система прекрасно объясняется конструкцией: «ветер дует — вода нагоняется, ветер не дует — вода оттекает обратно». Но, к сожалению, природа не любит дарить нам подарков в виде простых объяснений. Подробные данные наблюдений показали, что эта формула совсем не работает. Потому что на самом деле механизм более сложный, и связан не столько с тем, что происходит на поверхности, но и с тем, что происходит на небольшой глубине.

Океан, по сути, двухслойный, как пирожное с кремом. Верхний слой — теплый и перемешанный, а температура практически не изменяется с глубиной. Дальше идет зона резкого скачка под названием термоклин, где температура резко падает. Накопление теплой воды приводит к тому, что на западе термоклин располагается на глубине около двухсот метров, а на востоке на глубине 50 метров. Получается некий наклон. Один из основоположников теории Эль-Ниньо Клаус Виртки придумал ассоциативный термин — тихоокеанские качели. Представьте, что на доске качаются двое взрослых. Они, разумеется, будут опускаться и подниматься по очереди. Но если качаются взрослый и ребенок, то взрослый все время будет либо внизу, либо с трудом сможет подняться до середины. Нечто похожее происходит и в Тихом океане. В нормальных условиях есть наклон термоклина, а в условиях Эль-Ниньо наклона нет.

Внимательный читатель скажет, пассат же пропадает не полностью, а продолжает дуть, почему же тогда процесс развивается? Здесь как раз вступает в работу другой механизм. Вода все равно отгоняется от берегов, и ее «заменяет» вода снизу. Но если перемешанный слой стал намного толще, то и поднимающаяся вода будет уже не холодная, а теплая. В результате возникает огромное по масштабам потепление поверхностных вод.

Дарья Юрьевна Гущина на кафедре метеорологии и климатологии географического факультета МГУ

Дарья Юрьевна Гущина на кафедре метеорологии и климатологии географического факультета МГУ

Фото: Николай Мохначев / Научная Россия

Вообще, Южноамериканское побережье Тихого океана очень сухое. Это уникальный климатический район на земном шаре, где вроде бы есть океан и облака, но осадков нет, а на побережье — пустыня. Из растительности — несчастные кактусы, которые как-то умудряются расти в таких условиях. Дело в том, что облака над холодным течением составляют тонкую прослойку и находятся на высоте 800-1000 метров. Такие облака, пусть и выглядят очень страшно — серые, плотные, но не дают осадков. Поэтому единственный источник влаги для растений в этих районах — это росы.

Однако, когда теплеет вода, эффект влияния холодного течения и наличия инверсии температуры (когда температура с высотой не падает, а повышается) пропадает, и тогда в этих районах могут формироваться мощные облака, приносящие ливневые осадки.

Ливневые осадки на склонах Анд — это сели, оползни и катастрофа для населения, абсолютно не привыкшего к дождям. Например, в городе Ля-Серена, расположенном в Чили, закрываются все государственные учреждения, школы, детские сады, когда несколько дней идет дождь.

Также Эль-Ниньо приводит к исчезновению планктона и соответственно рыбы, что сильно бьет по экономике государств.

На противоположной стороне, куда обыкновенно пассаты несут влагу — в Австралии, Индонезии — в годы Эль-Ниньо, наблюдаются   страшнейшие засухи и пожары. Для Индонезии — одного из главных мировых поставщиков кофе — это огромные убытки. Неоднократно в годы Эль-Ниньо в Индонезии выгорали целые кофейные плантации.

— А что насчет больших ураганов, которые происходят в районе Северной и Южной Америки? Ответственно ли за это Эль-Ниньо или нет?

— Конечно, связь есть. Дело в том, что ураганы, они же тропические циклоны, формируются над водой, температура которой больше 27-ми градусов. Соответственно, в годы Эль-Ниньо, когда теплеет вся поверхность Тихого океана, площадь, занятая теплыми водами увеличивается, а значит расширяется район, где могут формироваться тропические циклоны. И в целом количество тропических циклонов, особенно в южной части Тихого океана, возрастает. Называют их по-разному: в Австралии — Вили-Вили, в странах, расположенных к северу от экватора — тайфунами, в Атлантике — ураганами, но по сути это все одно и то же — тропический циклон. Это гигантский вихрь, который сопровождается сильными ветрами, штормами и очень интенсивными осадками.

Целый ряд исследований подтверждает, что Эль-Ниньо может оказывать влияние на повторяемость и траектории тропических циклонов и в других регионах земного шара, но влияние, скорее, косвенное. Для формирования тропического циклона значимым показателем можно считать изменение направления ветра между нижней и верхней тропосферой, то есть изменение ветра с высотой. Если изменение небольшое, то это благоприятно для возникновения воронки тропического циклона. А если ветер у нас сильно меняется с высотой, то такая воронка возникнуть не может.

Поскольку Эль-Ниньо, как мы выяснили, меняет атмосферное давление на больших масштабах, то удаленное воздействие аномалии на циклоны возможно и в других регионах земного шара.

— Есть ли связь между Эль-Ниньо и климатическими изменениями?

— Исследования в этом направлении активно ведутся. Наравне с прогнозом Эль-Ниньо, связь с изменением климата — наиболее стремительно развивающееся направление.

Состояние климата прогнозируется посредством уже не столько климатических моделей, сколько модели земной системы, которая включает в себя взаимодействие всех оболочек: биосферы, литосферы, гидросферы, криосферы и пр. Климатические модели – это система гидродинамических уравнений, на основе которых по определенным климатическим сценариям рассчитываются оценки изменений климата.

Соответственно, оценить изменение Эль-Ниньо в будущем климате можно тоже только на основании климатических моделей. Но, к сожалению, пока уверенного прогноза об однонаправленном изменении Эль-Ниньо в будущем климате нет. Разные модели дают разные результаты, иногда с точностью до противоположных значений.

С уверенностью можно сказать только одно: в будущем количество экстремальных Эль-Ниньо увеличится. Согласно некоторым моделям, увеличится также и повторяемость Эль-Ниньо.

Когда область математического моделирования стала развиваться, выяснилось, что проявляется одна очень интересная вещь. В начале 2000-х в рамках Всемирной метеорологической организации была создана экспертная комиссия для формулировки определения Эль-Ниньо, поскольку в разных странах критерии отличались. От России в этой комиссии была я в качестве эксперта. Участники комиссии разработали и утвердили единое определение в 2004 году. Однако в дальнейшем в рамках этого определения в течение десяти лет не наблюдалось ни одного явления Эль-Ниньо. Это вызвало недоумение. Но, поскольку наблюдательные системы улучшались, ученые обнаружили, что Эль-Ниньо происходит, но в другом районе — в центре Тихого океана.

Правда, в дальнейшем явление, развивающееся в центре, получило специальное название — Эль-Ниньо Модоки, что в переводе с японского означает «точно такой же, но другой». Идея в принципе та же — потепление поверхностного слоя воды, но наблюдающееся в другом районе. Необходимо отметить, что аномальный сигнал от океана в атмосферу передается во многом за счет развития вертикального перемешивания или вертикальных потоков в процессе конвекции. Так вот в центре Тихого океана конвекция развивается и в нормальных условиях. Поэтому, когда появляется некоторая аномалия в центральных районах Тихого океана, она легко передается в атмосферу. А на востоке Тихого океана конвекция не развивается, там слишком холодная вода. Поэтому, даже когда Эль-Ниньо возникает, должно пройти какое-то время, пока будет преодолен порог, после чего начнет развиваться конвекция и запустится передача сигнала в атмосферу.

То есть даже если аномалия температуры поверхности в центре Тихого океана меньше, чем в случае восточного Эль-Ниньо, то последствия могут быть сопоставимы, поскольку эффект воздействия наступает быстрее. В начале считали, что «переезд» Эль-Ниньо произошел благодаря глобальному потеплению. Но благодаря реанализу — использованию моделей, восстанавливающих временные ряды, выяснили, что бывали такие Эль-Ниньо и раньше.

Вообще, если говорить о взаимном эффекте Эль-Ниньо и изменений климата, то здесь необходимо учитывать огромное количество сложных обратных связей. Любой отклик может как усилить начальное событие, так и ослабить его. Настоящий запутанный клубок. Чтобы его распутать, математически правильно описать и включить в модели — задача, в общем-то, весьма непростая.

— А как решается задача прогнозирования Эль-Ниньо сегодня?

— Существуют разные подходы и модели. Скажем, прогнозы изменений климата рассчитываются на десятилетия и столетие вперед. Если же говорить о прогнозе каждого конкретного следующего Эль-Ниньо, то прогноз должен быть оперативным, в масштабах 1-2 лет.

Сегодня, несмотря на все усилия мирового научного сообщества и на совершенствование моделей, пока не удается предсказать Эль-Ниньо больше чем за девять месяцев. И по этому поводу тоже есть масса шуток. Как я уже говорила, Эль-Ниньо в переводе с испанского означает «младенец». Так вот говорят, что больше чем за девять месяцев предсказать рождение младенца невозможно, и в случае Эль-Ниньо ассоциация точная.

Однако у этой шутки есть вполне научное объяснение. Исследователи давно пытаются определить, что же является спусковым крючком Эль-Ниньо. Почему явление происходит то раз два года, то раз в семь или десять? Если бы цикл был четкий, то мы бы всегда знали, когда наступит следующее Эль-Ниньо. Что служит триггером? Ученые уверены, что Эль-Ниньо возникает из-за появления западной аномалии ветра, которая в свою очередь связана с еще одним очень интересным явлением — колебанием Маддена–Джулиана. Осцилляция развивается в Индийском и Тихом океанах. Эти колебания имеют вид чередующихся областей с усиленными и ослабленными осадками размером в 6000 и 12000 км соответственно. Система движется на восток со скоростью от 4 до 8 м/с над тёплыми районами Индийского и Тихого океанов. Явление возникает около Африканского побережья и медленно перемещается на протяжении 30-60-ти дней, проходя через весь Индийский океан и вплоть до центра Тихого океана, где исчезает. Считается, что именно это явление вызывает более интенсивную западную аномалию ветра, которая создает аномалию в океане. Она движется к восточной части Тихого океана, где создаются условия Эль-Ниньо.

Проблема в том, что колебание MJO (Madden – Julian oscillation) само по себе сложно прогнозировать. Однако если мы видим, что в марте-апреле появились сильные западные ветра, значит, спусковой крючок спущен, процесс начался, и через 9 месяцев можно прогнозировать начало Эль-Ниньо.

— Казалось бы, Эль-Ниньо, Тихий океан — это все очень далеко от нашей страны. Как начала развиваться эта тематика в России?

— Если говорить о развитии тропической метеорологии в России, то пальма первенства принадлежит нашей кафедре метеорологии и климатологии на географическом факультете МГУ. Возглавлявший кафедру Сергей Петрович Хромов в 60-70-е годы участвовал в исследовательской программе «Разрезы», когда на судах перемещались вдоль одного меридиана практически через весь земной шар и проводили детальные наблюдения. В результате было накоплено много данных, в том числе и по тропикам, которые Сергей Петрович «привез» с собой. Доступ к данным получили сотрудники кафедры, после чего начались исследования.

Продолжил развитие тропической метеорологии Михаил Арамаисович Петросянц, который возглавлял кафедру с 1981 по 2005 год. Кстати, до 1981 года он был директором Гидрометцентра Советского Союза.
Это была эпоха расцвета Гидрометслужбы: выделялось большое финансирование, а страна была одним из главных участников международных проектов, в том числе двух тропических экспериментов ТРОПЭКС-72 и ТРОПЭКС-74, которые Михаил Арамаисович возглавлял от Советского Союза.

Портрет Михаила Арамаисовича Петросянца в одной из аудиторий географического факультета МГУ

Портрет Михаила Арамаисовича Петросянца в одной из аудиторий географического факультета МГУ

Фото: Николай Мохначев / Научная Россия 

Вновь был накоплен огромный массив данных, в том числе по Эль-Ниньо, что привело к росту интереса со стороны сотрудников кафедры. А в целом изучением Эль-Ниньо занимаются практически во всех странах мира, так как последствия этого явления имеют действительно глобальный масштаб

Почему вы заинтересовались тематикой климата в свое время?

— Интерес появился в школе. В 5 классе у меня была замечательная преподавательница по географии Вера Еремеевна Сосина. Она очень увлекательно рассказывала о географических явлениях и процессах. В это же время в комнате появились географические карты, которые я очень любила изучать.

Хотя потом меня увлекли другие направления. Я хотела быть и музыкантом, и вулканологом, и хоровым дирижером. Кстати любовь к хоровому искусству сохранилась до сих пор — я пою в хоре Московского университета.

Дарья Юрьевна Гущина на выступлении

Дарья Юрьевна Гущина на выступлении

Фото: из личного архива

В итоге я обратила внимание на географический факультет, хотя был интерес и к физике, и к математике. Посовещавшись с родителями, мы стали искать в географии наиболее физико-математическую область науки. Такой оказалась метеорология. Правда, у меня всегда была страсть и к океанологии, но в 90-е годы в океанологию девушек не брали вообще.

Но, в целом, судьба всё равно привела меня к океану. Я стала изучать Эль-Ниньо, которое развивается в океане. Поэтому я часто общаюсь с океанологами, не только с российскими, но и с французскими. А взаимодействие океана и атмосферы — моя основная научная тематика.

Кстати, в 80-е годы в России впервые появилось переводное издание американского журнала Scientific American — журнал «В мире науки». В нем всегда содержались красивые иллюстрации и интересные статьи. В одном из номеров была опубликована статья об Эль-Ниньо. Меня увлекла логическая цепочка, факт того, что все между собой взаимосвязано, все друг на друга влияет. Даже сегодня я люблю повторять моим студентам фразу: даже если вы что-то забыли, попытайтесь распутать логический клубок.

После прочтения статьи я обратилась к заведующему кафедрой Михаилу Арамаисовичу Петросянцу и к нынешнему заведующему Александру Викторовичу Кислову, который в то время вел у нас учебную практику, с вопросом об этой тематике. С легкой руки Александра Викторовича и Михаила Арамаисовича я пришла к Евгению Константиновичу Семенову, к сожалению, ушедшему из жизни совсем недавно. И моя первая курсовая работа третьего курса была посвящена явлению Эль-Ниньо. А дальше под руководством сначала Евгения Константиновича, потом Михаила Арамаисовича, потом уже самостоятельно, в рамках докторской диссертации, я посвятила всю свою сознательную научную жизнь этому интересному явлению.

Последний, скорее философский, вопрос: как вы относитесь к природе и ее разрушительным силам? Стоит ли ее бояться или это нечто, что человек не может постичь?

— Я, пожалуй, отношусь к тем, кто тоже боится природных катаклизмов. Я понимаю, что человек с энергией и мощью природы до конца справиться не сможет никогда. Такие страшные явления, как пожары, цунами, землетрясения, извержения вулкана нам не подвластны. Единственное, что мы можем сделать, вовремя эвакуироваться. А эвакуация возможна при своевременном предупреждении.

Поэтому, конечно, на прогноз катастрофических явлений направлено очень много сил специалистов всего мира.

Хотя не так страшен черт, как его малюют. Здесь проявляется и субъективный фактор. Раньше мы просто меньше об этом знали. Сейчас достаточно выпасть снегу где-нибудь в Аргентине, назавтра все средства массовой информации напишут об аномалии. В конце XX века выпадать могло что угодно, где угодно, но больше говорили о политике, о холодной войне, и меньше — о снеге в Аргентине. Сейчас тема погоды и климата стала исключительно модной, и обо всех катаклизмах мы узнаём практически сразу.

Поэтому, конечно, у каждого конкретного человека несколько гипертрофированное представление об увеличении количества природных катастроф. Ведь раньше он о них попросту не знал. А сегодня информация звучит отовсюду: из телевизора, по радио, в интернете. Даже МЧС предупреждает нас регулярно с помощью сообщений.

Но тем не менее научные данные показывают, что количество экстремальных осадков и штормов увеличивается. Однако это все сильно зависит от региона, потому «средняя температура по больнице» ни о чем не говорит.

Но природные катастрофы остаются. Запретить природе мы не можем. С текущей лавой справиться нельзя, как и с цунами, идущем к побережью. И даже тропический циклон, пусть он и не такой страшный, уж если сформировался и идет к континенту, остановить невозможно. Хотя были в свое время проекты в эпоху холодной войны, в рамках которых предлагалось подогреть океан, чтоб тропический циклон направился туда, куда надо. Но это невозможно.

И, наверное, это хорошо.

— Да, наверное, это хорошо. Хотя, конечно, какие-то попытки предпринимаются. Как в случае со знаменитым разгоном облаков. Конечно, никто никого никуда не гоняет. Если мы не хотим, чтобы дождь прошел над Красной площадью, то надо сделать так, чтобы облако выпало осадками, не доходя до Москвы. Значит, необходимо засеять в облако ледяные кристаллы. Это решается с помощью йодида серебра. Попадая в облако, йодистое серебро запускает процесс кристаллообразования, и осадки выпадают там, где произошел «засев». Но подобные манипуляции можно проводить только с конвективными облаками, то есть отдельными. При огромном массиве слоистообразной облачности теплого фронта никакой засев не сработает.

Энергия природы намного больше, чем все энергетические возможности человечества.

 

Дарья Юрьевна Гущина Российская академия наук Эль-Ниньо географический факультет мгу изменения климата климат климатология мгу метеорология московский государственный университет имени ломоносова профессора ран ран тихий океан ураганы южная осцилляция

Назад

Иллюстрации

Все фото

Социальные сети

Комментарии

Авторизуйтесь, чтобы оставить комментарий

Информация предоставлена Информационным агентством "Научная Россия". Свидетельство о регистрации СМИ: ИА № ФС77-62580, выдано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций 31 июля 2015 года.