Один из профессоров РАН, сотрудник Математического института им. Стеклова Александр Печень в этом году получил звание федерального профессора математики в рамках реализации Концепции развития математического образования в России. Конкурс на эту позицию был объявлен в октябре 2015 года, кандидаты подавали заявку по развитию математического образования в определенной научной области в вузе по своему выбору. Срок финансирования этой программы — 5 лет, до 2020 года. По итогам конкурса из 124 заявок были выбраны 18 победителей, один из них — профессор РАН Александр Печень. Он разработал план развития образования в области математических проблем квантовых технологий для НИТУ «МИСиС».

Обязанности федерального профессора, объяснил победитель, включают проведение исследований, преподавание, организацию семинаров и участие в организации конференций. Основная задача Печеня — проведение исследований в области математических вопросов, связанных с квантовыми технологиями, в основном связанных с тематикой управления квантовыми системами.

Молодой ученый окончил физический факультет МГУ им. Ломоносова в 2001 году, в 2004-м защитил кандидатскую диссертацию в Математическом институте им. Стеклова. В 2005–2010 годах работал в США, в Принстонском университете. За выполненные в то время работы ему была присуждена американская премия Блаватника. Он также был приглашенным исследователем в университете Рима Tor Vergata и Национальном университете Мексики, а еще два года работал в Институте Вейцмана в области теории управления квантовыми системами в рамках 7-й Рамочной Программы Европейской Комиссии (Marie Curie Incoming International Fellowship, проект ACOLA).

Сфера научных интересов Александра Печеня —  квантовые технологии. Его интересуют математические вопросы, связанные с управлением атомными и молекулярными системами с помощью модулированных лазерных импульсов и других внешних воздействий. Результаты его работы можно применять в самых передовых исследованиях в атомной и молекулярной физике, химии, квантовой информации, ядерной физике и других областях.

Во время работы в Принстонском университете он, совместно с профессором Рабицем и другими коллегами, разработал математический метод, который позволяет заниматься задачами управления квантовыми системами, взаимодействующими с окружением, а также метод создания произвольных состояний квантовых систем с использованием специальной комбинации когерентного и некогерентного управлений. Последний метод позволяет обеспечить наиболее сильную степень управляемости для открытых квантовых систем. Работая в Институте Вейцмана, он совместно с профессором Тэннором обнаружил ловушечные свойства в задачах управления некоторым классом квантовых систем.

«Квантовые технологии — это такие технологии, в основе которых лежат квантовые эффекты, свойственные отдельным атомам и молекулам, — объяснил Александр Печень. — Поведение отдельных атомов или молекул существенно отличается от поведения макроскопических объектов. Например, электрон может находиться одновременно в нескольких (и даже сразу во всех) точках пространства. Разные частицы могут вести себя иногда как волна, а иногда как частица. Квантовая частица может преодолеть потенциальный барьер, высота которого больше, чем ее энергия — это так называемый туннельный эффект, применяемый в микроэлектронике (в туннельных диодах).

В числе непривычных для нас свойств квантового мира являются — неопределенности Гейзенберга, который утверждает, что невозможно одновременно точно измерить координату и импульс квантовый частицы, явление квантовой запутанности и многие другие подобные явления».

Сейчас все заметнее растет интерес к использованию необычных квантовых свойств атомов и молекул для создания новых технологий. Одно из практических применений квантовых эффектов — разработка квантовой криптографии. Благодаря им можно построить такие каналы передачи информации, которые нельзя будет незаметно прослушать. Квантовый параллелизм позволяет существенно ускорить вычисления в некоторых задачах с использованием алгоритма Шора и алгоритма Гровера. Квантовые симуляторы должны позволить эффективно моделировать новые материалы.

Есть и прототипы квантовых вычислительных устройств — размером примерно 1000 квантовых бит. Они разработаны компанией D-Wave. Квантовую природу имеет также явление сверхпроводимости, позволяющее без потерь передавать электрическую энергию. Лазерная химия, то есть управление химическими реакциями с помощью модулируемого лазерного излучения, также относится к области квантовых технологий.

В квантовых технологиях нередко возникает необходимость манипулирования квантовыми частицами с помощью внешнего воздействия, например лазерного импульса. Профессор РАН Александр Печень этим и занимается — задачами управления открытыми квантовыми системами, в том числе связанными с определением степени эффективности различных методов поиска наилучших управления.