Новости науки на портале «Научная Россия»

Ученые НИЯУ МИФИ смоделировали изменения возбужденного состояния молекулы органического полупроводника

Ученые НИЯУ МИФИ смоделировали изменения возбужденного состояния молекулы органического полупроводника
Использование органики потенциально позволяет создавать элементы микросхем размером в одну молекулу

Современная кремниевая электроника практически дошла до предела миниатюризации. Использование органики потенциально позволяет создавать элементы микросхем размером в одну молекулу. Ученые НИЯУ МИФИ ведут активные исследования в этой области. Недавно они смоделировали изменения возбужденного состояния молекулы органического полупроводника, сообщает РИА Новости. Результаты работы опубликованы в "Journal of Physical Chemistry".

Органическая электроника считается перспективной по двум причинам. Во-первых, сырье для органического синтеза вполне доступно. Во-вторых, использование органических материалов позволяет делать элементы микросхем размером в одну молекулу, что сближает их с внутриклеточными структурами живых объектов.

Направленный дизайн органических молекул и функциональных материалов для органической электроники – перспективное научное направление. Ученые обобщают существующий мировой опыт и занимаются предсказательным моделированием.

"Наша группа занимается предсказательным моделированием свойств материалов для органической электроники, конкретно – для органических светодиодов (OLED). При работе OLED с катода подаются электроны, с анода – дырки, где-то посередине устройства они встречаются и рекомбинируют, при этом излучается свет. Состояние, когда электрон и дырка находятся рядом, но не рекомбинируют, может жить достаточно долго – его называют экситоном, чаще всего этот экситон локализован в пределах одной молекулы", – рассказала один из авторов исследования, ассистент кафедры физики конденсированных сред Национального исследовательского ядерного университета "МИФИ" и научный сотрудник Центра фотохимии РАН Александра Фрейдзон.

По ее словам, с помощью переноса экситона на соседние молекулы удобно управлять цветом и эффективностью свечения OLEDов: между слоями n- и p-типов органических полупроводников помещают излучающий слой (обычно тоже полупроводник), где электроны с дырками встречаются, рекомбинируют и не "разлучаются".

"Мы изучили поведение экситона в молекуле типичного дырочного полупроводника, также используемого в качестве матрицы излучающего слоя. Выяснилось, что экситон локализуется не на всей молекуле, а на отдельных ее частях, и может мигрировать по молекуле. В частности, мигрировать под действием небольших возмущений – таких, как присутствие другой молекулы (например, допанта-излучателя) ", – сообщила Александра Фрейдзон.

Исследователи прояснили механизм и оценили время миграции экситона из одного конца молекулы в другой.

"Оказалось, что по одному из путей миграция происходит очень быстро, в пикосекундном масштабе – и помогают ей в этом вполне определенные внутримолекулярные колебания", – добавила сотрудник НИЯУ МИФИ.

Как считают авторы, теперь можно оценить, как на этот процесс влияет присутствие соседних молекул, и предложить модификации структуры исходной молекулы, чтобы сделать процесс переноса энергии возбуждения на молекулу излучателя максимально эффективным. В этом и состоит процесс виртуального проектирования функциональных материалов: ученые выделяют ключевую функцию материала и строят модель процесса, лежащего в основе этой функции, чтобы определить основные факторы, влияющие на эффективность процесса, и предложить новые модификации материала.

Ученые отмечают, что сейчас находятся на первой стадии понимания процесса миграции экситона в органических полупроводниках. Уже скоро они смогут давать рекомендации по модификации молекул, используемых в матрицах излучающих слоев OLED.

 

Источник: ria.ru

органические полупроводники

Назад

Социальные сети

Комментарии

Авторизуйтесь, чтобы оставить комментарий

Информация предоставлена Информационным агентством "Научная Россия". Свидетельство о регистрации СМИ: ИА № ФС77-62580, выдано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций 31 июля 2015 года.