Материалы портала «Научная Россия»

Физики МГУ нашли способ усовершенствовать оптические волноводы

Физики МГУ нашли способ усовершенствовать оптические волноводы
Открытие физиков может найти применение в производстве фотонных устройств

Сотрудники физического факультета МГУ имени М.В. Ломоносова изучали эффекты, возникающие в оптических волноводах при изменении расстояния между кремниевым волноводом и диэлектрической наночастицей. Оказалось, что при определённом положении наночастицы относительно волновода в ней возникают не известные ранее физические эффекты. Учёные исследовали и описали их. Открытие физиков может найти применение в производстве фотонных устройств. Результаты исследования опубликованы в престижном журнале ACS Photonics.

В основе современной электроники лежат микросхемы, работающие на движении электронов. За последние полвека в электронике наблюдается тренд на уменьшение размеров микросхем и увеличение их энергоэффективности. Однако, по мнению экспертов, в ближайшие годы развитие электроники, основанной на «классических принципах» достигнет своего пика и упрётся в ограничения физических законов.

Разрешить предстоящее противоречие сможет интегральная нанофотоника. Основная цель этой области науки заключается в замене традиционных компонентов электроники на фотонные. Нанофотоника в последние годы развивается особенно бурно и возможно уже в ближайшем будущем найдёт способ заменить классические микросхемы устройствами, основанными на распространении светового сигнала. На физическом факультете МГУ такими разработками занимаются в лаборатории нанофотоники метаматериалов под руководством профессора Андрея Федянина.

 «В нашей работе мы исследовали оптическую связь диэлектрической наночастицы с ключевым элементом интегральной нанофотоники — кремниевым волноводом,— комментирует ведущий автор исследования, аспирант кафедры квантовой электроники и младший научный сотрудник Центра квантовых технологий МГУ Кирилл Охлопков. — С помощью совмещения одновременно двух экспериментальных методик (микроскопии генерации третьей оптической гармоники и конфокальной микроскопии) было показано, что при изменении расстояния между наночастицей и волноводом оптическая связь этих наноструктур влияет на условия возбуждения магнитного дипольного резонанса в наночастице, что приводит к заметной модуляции сигнала третьей оптической гармоники от наночастицы. Экспериментально детектируемое изменение сигнала третьей гармоники при этом достигало заметной величины — 4.5 раза. Также методами численного моделирования было продемонстрировано, что наночастица, в свою очередь, тоже влияет на излучение, распространяющееся по такому волноводу».

Таким образом, учёные выявили как влияние волновода на время жизни магнитного дипольного резонанса наночастицы, так и влияние близости наночастицы на распространяющееся по волноводу излучение.

«В наши дальнейшие планы входит экспериментальное исследование влияния резонансной наночастицы на волноводные моды, распространяющиеся по кремниевому волноводу, а также изучение вопросов распространения таких мод в волноводах, которые сами представляют собой последовательность резонансных кремниевых наночастиц,— подытоживает Кирилл Охлопков. — Мы надеемся, что наше исследование послужит важным шагом на пути к интеграции диэлектрических Ми-резонансных наночастиц в фотонные устройства».

Пресс-служба МГУ

Фото. Михаил Михайлов. Кафедра фотожурналистики и технологий СМИ МГУ.

интегральная нанофотоника кремниевый волновод нанофотоника

Назад

Социальные сети

Комментарии

Авторизуйтесь, чтобы оставить комментарий

Информация предоставлена Информационным агентством "Научная Россия". Свидетельство о регистрации СМИ: ИА № ФС77-62580, выдано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций 31 июля 2015 года.