Материалы портала «Научная Россия»

Физики из РАН и МФТИ исследовали сверхпроводимость и увидели «сверхпроводящее стекло»

Физики из РАН и МФТИ исследовали сверхпроводимость и увидели «сверхпроводящее стекло»
Переход системы из состояния «сверхпроводник» в состояние «металл» стал объектом исследования профессора Московского физико-технического института (МФТИ), заместителя директора Института теоретической физики имени Л.Д. Ландау (ИТФ РАН), д.ф.-м.н. Михаила

Переход системы из состояния «сверхпроводник» в состояние «металл» стал объектом исследования профессора Московского физико-технического института (МФТИ), заместителя директора Института теоретической физики имени Л.Д. Ландау (ИТФ РАН), д.ф.-м.н. Михаила Фейгельмана, его ученика Константина Тихонова (также работает в ИТФ РАН) и их коллег из Франции и Израиля. Результаты работы опубликованы в журнале Nature Physics в ночь на понедельник по московскому времени.

Изменяя напряжение на специальном электростатическом затворе, авторы эксперимента могли через графен плавно менять плотность электронов проводимости в нем и тем самым силу джозефсоновских контактов между нанодисками олова. При этом в силу малой плотности носителей тока сам графен не портил сверхпроводящие свойства и их фазы нанодисков олова. Но корреляции фаз между нанодисками и, следовательно, их сверхпроводимость разрушаются тепловыми флуктуациями при температурах выше критической температуры Tc. Один из результатов ученых — измеренное значение Tc, которое получилось равным 0,7 кельвина. Этот результат находится в хорошем согласии с ранее развитой теорией, опубликованной в 2009 году в статье Михаила Фейгельмана, Константина Тихонова и его коллег в журнале Solid State Communications.

Но стоило экспериментаторам понизить электронную плотность в графене, как джозефсоновские связи начали ослабевать за счет увеличения сопротивления графеновых промежутков. В результате температура перехода в когерентное (то есть сверхпроводящее) состояние резко падала ниже минимальной температуры эксперимента (60 милликельвинов). Это и есть квантовый фазовый переход «сверхпроводник — металл», о котором говорилось выше. Пространственная когерентность фаз отдельных нанодисков разрушилась уже одними квантовыми (и независящими от температуры) флуктуациями фаз. Это первое экспериментальное исследование такого перехода.

Михаил ФейгельманОсновы теории такого фазового перехода были ранее разработаны Михаилом Фейгельманом и его коллегами в статье, опубликованной в Physical Review Letters в 2001 году.

Но готовой теории для того, чтобы объяснить поведение сопротивления решетки, которое в области самых низких доступных для измерений температур оказывается резко экспоненциально зависящим от напряжения на электрическом затворе, пока нет. Наконец, в дополнение к указанному выше переходу «сверхпроводник — металл» авторы обнаружили состояние так называемого сверхпроводящего стекла.

При слове «стекло» не нужно думать, что речь идет о том, что пропускает видимое глазу человека излучение: собственно, сейчас стеклом называется любой материал независимо от его химического состава, который при охлаждении переходит из жидкого состояния в твердое без кристаллизации. В случае «сверхпроводящего стекла» речь идет о его свойствах системы, которая становится более похожа на керамику. В описываемом эксперименте «сверхпроводящее стекло» возникло вследствие беспорядка и фрустрации в джозефсоновских связях. При этом оно отвечает какому-то из минимумов суммарной энергии джозефсоновских контактов. Здесь управляющим параметром является напряженность внешнего магнитного поля. Конкуренция периодической зависимости от величины потока внешнего магнитного поля через элементарную ячейку решетки нанодисков и случайной зависимости от этого же параметра (из-за мезоскопических флуктуаций) приводит к так называемой фазовой диаграмме возвратного типа. Это значит, что величина максимального сверхпроводящего тока, протекающего через всю решетку, немонотонно зависит от внешнего магнитного поля: сначала убывает (вплоть до нуля), а потом вновь проявляется с ростом магнитного поля в некотором интервале его значений.

Описанная выше работа носит чисто фундаментальный характер. Но в перспективе сверхпроводники смогут полностью изменить жизнь людей, так как они теоретически позволяют передавать электрический ток на любые расстояния без каких-либо потерь. Это явление уже нашло широкое применение в создании электромагнитов для ускорителей заряженных частиц (в том числе и на Большом адронном коллайдере) или в ядерно-резонансной томографии — одном из наиболее передовых методов диагностики в медицине.

Источник: www.gazeta.ru

итф ран константин тихонов михаил фейгельман мфти сверхпроводящее стекло

Назад

Социальные сети

Комментарии

Авторизуйтесь, чтобы оставить комментарий